Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Arch Toxicol ; 96(5): 1483-1487, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35304627

RESUMEN

Microfluidic tissue culture and organ-on-a-chip models provide efficient tools for drug testing in vivo and are considered to become the basis of in vitro test systems to analyze drug response, drug interactions and toxicity to complement and reduce animal testing. A major limitation is the efficient recording of drug action. Here we present an efficient experimental setup that allows long-term cultivation of cells in a microfluidic system in combination with continuous recording of luciferase reporter gene expression. The system combines a sensitive cooled luminescence camera system in combination with a custom build miniaturized incubation chamber. The setup allows to monitor time-dependent activation, but also the end of drug response. Repeated activation and recovery as well as varying durations of drug treatment periods can be monitored, and different modes of drug activity can be visualized.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Animales , Dispositivos Laboratorio en un Chip
2.
Oncotarget ; 6(30): 28833-50, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26353931

RESUMEN

NF-κB activation depends on the IKK complex consisting of the catalytically active IKK1 and 2 subunits and the scaffold protein NEMO. Hitherto, IKK2 activation has always been associated with IκBα degradation, NF-κB activation, and cytokine production. In contrast, we found that in SCF-stimulated primary bone marrow-derived mast cells (BMMCs), IKK2 is alternatively activated. Mechanistically, activated TAK1 mediates the association between c-Kit and IKK2 and therefore facilitates the Lyn-dependent IKK2 activation which suffices to mediate mitogenic signaling but, surprisingly, does not result in NF-κB activation. Moreover, the c-Kit-mediated and Lyn-dependent IKK2 activation is targeted by MyD88-dependent pathways leading to enhanced IKK2 activation and therefore to potentiated effector functions. In neoplastic cells, expressing constitutively active c-Kit mutants, activated TAK1 and IKKs do also not induce NF-κB activation but mediate uncontrolled proliferation, resistance to apoptosis and enables IL-33 to mediate c-Kit-dependent signaling. Together, we identified the formation of the c-Kit-Lyn-TAK1 signalosome which mediates IKK2 activation. Unexpectedly, this IKK activation is uncoupled from the NF-κB-machinery but is critical to modulate functional cell responses in primary-, and mediates uncontrolled proliferation and survival of tumor-mast cells. Therefore, targeting TAK1 and IKKs might be a novel approach to treat c-Kit-driven diseases.


Asunto(s)
Quinasa I-kappa B/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Mastocitos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-kit/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Células Madre/farmacología , Animales , Apoptosis , Diferenciación Celular , Proliferación Celular , Relación Dosis-Respuesta a Droga , Activación Enzimática , Genotipo , Células HEK293 , Humanos , Quinasa I-kappa B/antagonistas & inhibidores , Quinasa I-kappa B/deficiencia , Quinasa I-kappa B/genética , Interleucina-33/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Mastocitos/enzimología , Mastocitos/patología , Ratones Noqueados , Mutación , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , Fenotipo , Cultivo Primario de Células , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-kit/genética , Factores de Tiempo , Transfección , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA