Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 30(4): 5937-5952, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35209545

RESUMEN

The complete understanding of the formation of seemingly levitating droplets on liquid-repelling surfaces provides the basis for further development of applications requiring friction-free liquid transport. For the investigation of these droplets and, thereby, the underlying surface properties, standard techniques typically only reveal a fraction of droplet or surface information. Here, we propose to exploit the light-shaping features of liquid droplets when interpreted as thick biconvex elliptical lenses. This approach has the potential to decode a plethora of droplet information from a passing laser beam, by transforming the information into a structured light field. Here, we explore this potential by analyzing the three-dimensional intensity structures sculpted by the droplet lenses, revealing the transfer of the characteristics of the underlying liquid-repelling effect onto the light field. As illustrative complementary examples, we study droplet lenses formed on a non-wetting Taro (Colocasia esculenta) leaf surface and by the Leidenfrost effect on a heated plate. Our approach may reveal even typically "invisible" droplet properties as the refractive index or internal flow dynamics and, hence, will be of interest to augment conventional tools for droplet and surface investigation.

2.
Opt Express ; 29(9): 12967-12975, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33985042

RESUMEN

We customize a transversely structured, tunable light landscape on the basis of orbital angular momentum (OAM)-carrying beams for the purpose of advanced optical manipulation. Combining Laguerre-Gaussian (LG) modes with helical phase fronts of opposite OAM handedness, counter-rotating transfer of OAM is enabled in a concentric intensity structure, creating a dynamic "grinding" scenario on dielectric microparticles. We demonstrate the ability to trap and rotate silica spheres of various sizes and exploit the light fields' feature to spatially separate trapped objects by their size. We show the adaptability of the light field depending on the chosen LG mode indices, allowing on-demand tuning of the trapping potential and sorting criteria. The versatility of our approach for biomedical application is examined by spatial discriminating yeast cells and silica spheres of distinct diameter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA