Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microbiology (Reading) ; 169(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37650867

RESUMEN

The evolution of a novel trait can profoundly change an organism's effects on its environment, which can in turn affect the further evolution of that organism and any coexisting organisms. We examine these effects and feedbacks following the evolution of a novel function in the Long-Term Evolution Experiment (LTEE) with Escherichia coli. A characteristic feature of E. coli is its inability to grow aerobically on citrate (Cit-). Nonetheless, a Cit+ variant with this capacity evolved in one LTEE population after 31 000 generations. The Cit+ clade then coexisted stably with another clade that retained the ancestral Cit- phenotype. This coexistence was shaped by the evolution of a cross-feeding relationship based on C4-dicarboxylic acids, particularly succinate, fumarate, and malate, that the Cit+ variants release into the medium. Both the Cit- and Cit+ cells evolved to grow on these excreted resources. The evolution of aerobic growth on citrate thus led to a transition from an ecosystem based on a single limiting resource, glucose, to one with at least five resources that were either shared or partitioned between the two coexisting clades. Our findings show that evolutionary novelties can change environmental conditions in ways that facilitate diversity by altering ecosystem structure and the evolutionary trajectories of coexisting lineages.


Asunto(s)
Ecosistema , Escherichia coli , Escherichia coli/genética , Citratos , Ácido Cítrico , Ácidos Dicarboxílicos
2.
J Vis Exp ; (198)2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37607082

RESUMEN

The Long-Term Evolution Experiment (LTEE) has followed twelve populations of Escherichia coli as they have adapted to a simple laboratory environment for more than 35 years and 77,000 bacterial generations. The setup and procedures used in the LTEE epitomize reliable and reproducible methods for studying microbial evolution. In this protocol, we first describe how the LTEE populations are transferred to fresh medium and cultured each day. Then, we describe how the LTEE populations are regularly checked for possible signs of contamination and archived to provide a permanent frozen "fossil record" for later study. Multiple safeguards included in these procedures are designed to prevent contamination, detect various problems when they occur, and recover from disruptions without appreciably setting back the progress of the experiment. One way that the overall tempo and character of evolutionary changes are monitored in the LTEE is by measuring the competitive fitness of populations and strains from the experiment. We describe how co-culture competition assays are conducted and provide both a spreadsheet and an R package (fitnessR) for calculating relative fitness from the results. Over the course of the LTEE, the behaviors of some populations have changed in interesting ways, and new technologies like whole-genome sequencing have provided additional avenues for investigating how the populations have evolved. We end by discussing how the original LTEE procedures have been updated to accommodate or take advantage of these changes. This protocol will be useful for researchers who use the LTEE as a model system for studying connections between evolution and genetics, molecular biology, systems biology, and ecology. More broadly, the LTEE provides a tried-and-true template for those who are beginning their own evolution experiments with new microbes, environments, and questions.


Asunto(s)
Bioensayo , Escherichia coli , Escherichia coli/genética , Técnicas de Cocultivo , Ejercicio Físico , Laboratorios
3.
Elife ; 92020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32469311

RESUMEN

Evolutionary innovations allow populations to colonize new ecological niches. We previously reported that aerobic growth on citrate (Cit+) evolved in an Escherichia coli population during adaptation to a minimal glucose medium containing citrate (DM25). Cit+ variants can also grow in citrate-only medium (DM0), a novel environment for E. coli. To study adaptation to this niche, we founded two sets of Cit+ populations and evolved them for 2500 generations in DM0 or DM25. The evolved lineages acquired numerous parallel mutations, many mediated by transposable elements. Several also evolved amplifications of regions containing the maeA gene. Unexpectedly, some evolved populations and clones show apparent declines in fitness. We also found evidence of substantial cell death in Cit+ clones. Our results thus demonstrate rapid trait refinement and adaptation to the new citrate niche, while also suggesting a recalcitrant mismatch between E. coli physiology and growth on citrate.


Asunto(s)
Evolución Biológica , Ácido Cítrico/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Ácido Cítrico/metabolismo , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos
4.
Science ; 362(6415)2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30409860

RESUMEN

Historical processes display some degree of "contingency," meaning their outcomes are sensitive to seemingly inconsequential events that can fundamentally change the future. Contingency is what makes historical outcomes unpredictable. Unlike many other natural phenomena, evolution is a historical process. Evolutionary change is often driven by the deterministic force of natural selection, but natural selection works upon variation that arises unpredictably through time by random mutation, and even beneficial mutations can be lost by chance through genetic drift. Moreover, evolution has taken place within a planetary environment with a particular history of its own. This tension between determinism and contingency makes evolutionary biology a kind of hybrid between science and history. While philosophers of science examine the nuances of contingency, biologists have performed many empirical studies of evolutionary repeatability and contingency. Here, we review the experimental and comparative evidence from these studies. Replicate populations in evolutionary "replay" experiments often show parallel changes, especially in overall performance, although idiosyncratic outcomes show that the particulars of a lineage's history can affect which of several evolutionary paths is taken. Comparative biologists have found many notable examples of convergent adaptation to similar conditions, but quantification of how frequently such convergence occurs is difficult. On balance, the evidence indicates that evolution tends to be surprisingly repeatable among closely related lineages, but disparate outcomes become more likely as the footprint of history grows deeper. Ongoing research on the structure of adaptive landscapes is providing additional insight into the interplay of fate and chance in the evolutionary process.


Asunto(s)
Adaptación Biológica/genética , Evolución Biológica , Selección Genética , Animales , Humanos , Laboratorios
5.
Proc Natl Acad Sci U S A ; 115(44): 11286-11291, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30322921

RESUMEN

A fitness landscape is a map between the genotype and its reproductive success in a given environment. The topography of fitness landscapes largely governs adaptive dynamics, constraining evolutionary trajectories and the predictability of evolution. Theory suggests that this topography can be deformed by mutations that produce substantial changes to the environment. Despite its importance, the deformability of fitness landscapes has not been systematically studied beyond abstract models, and little is known about its reach and consequences in empirical systems. Here we have systematically characterized the deformability of the genome-wide metabolic fitness landscape of the bacterium Escherichia coli Deformability is quantified by the noncommutativity of epistatic interactions, which we experimentally demonstrate in mutant strains on the path to an evolutionary innovation. Our analysis shows that the deformation of fitness landscapes by metabolic mutations rarely affects evolutionary trajectories in the short range. However, mutations with large environmental effects produce long-range landscape deformations in distant regions of the genotype space that affect the fitness of later descendants. Our results therefore suggest that, even in situations in which mutations have strong environmental effects, fitness landscapes may retain their power to forecast evolution over small mutational distances despite the potential attenuation of that power over longer evolutionary trajectories. Our methods and results provide an avenue for integrating adaptive and eco-evolutionary dynamics with complex genetics and genomics.


Asunto(s)
Escherichia coli/genética , Aptitud Genética/genética , Evolución Molecular , Genotipo , Modelos Genéticos , Mutación/genética
6.
Stud Hist Philos Biol Biomed Sci ; 58: 82-92, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26787098

RESUMEN

Biological evolution is a fundamentally historical phenomenon in which intertwined stochastic and deterministic processes shape lineages with long, continuous histories that exist in a changing world that has a history of its own. The degree to which these characteristics render evolution historically contingent, and evolutionary outcomes thereby unpredictably sensitive to history has been the subject of considerable debate in recent decades. Microbial evolution experiments have proven among the most fruitful means of empirically investigating the issue of historical contingency in evolution. One such experiment is the Escherichia coli Long-Term Evolution Experiment (LTEE), in which twelve populations founded from the same clone of E. coli have evolved in parallel under identical conditions. Aerobic growth on citrate (Cit(+)), a novel trait for E. coli, evolved in one of these populations after more than 30,000 generations. Experimental replays of this population's evolution from various points in its history showed that the Cit(+) trait was historically contingent upon earlier mutations that potentiated the trait by rendering it mutationally accessible. Here I review this case of evolutionary contingency and discuss what it implies about the importance of historical contingency arising from the core processes of evolution.


Asunto(s)
Evolución Biológica , Escherichia coli/genética , Aerobiosis/genética , Aerobiosis/fisiología , Ácido Cítrico/metabolismo , Escherichia coli/metabolismo , Escherichia coli/fisiología , Selección Genética
7.
Proc Biol Sci ; 282(1821): 20152292, 2015 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-26674951

RESUMEN

Many populations live in environments subject to frequent biotic and abiotic changes. Nonetheless, it is interesting to ask whether an evolving population's mean fitness can increase indefinitely, and potentially without any limit, even in a constant environment. A recent study showed that fitness trajectories of Escherichia coli populations over 50 000 generations were better described by a power-law model than by a hyperbolic model. According to the power-law model, the rate of fitness gain declines over time but fitness has no upper limit, whereas the hyperbolic model implies a hard limit. Here, we examine whether the previously estimated power-law model predicts the fitness trajectory for an additional 10 000 generations. To that end, we conducted more than 1100 new competitive fitness assays. Consistent with the previous study, the power-law model fits the new data better than the hyperbolic model. We also analysed the variability in fitness among populations, finding subtle, but significant, heterogeneity in mean fitness. Some, but not all, of this variation reflects differences in mutation rate that evolved over time. Taken together, our results imply that both adaptation and divergence can continue indefinitely--or at least for a long time--even in a constant environment.


Asunto(s)
Escherichia coli/genética , Aptitud Genética , Adaptación Fisiológica/genética , Evolución Biológica , Ambiente , Genética de Población , Modelos Genéticos , Tasa de Mutación
8.
PLoS One ; 10(11): e0142050, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26581098

RESUMEN

In a long-term evolution experiment with Escherichia coli, bacteria in one of twelve populations evolved the ability to consume citrate, a previously unexploited resource in a glucose-limited medium. This innovation led to the frequency-dependent coexistence of citrate-consuming (Cit+) and non-consuming (Cit-) ecotypes, with Cit-bacteria persisting on the exogenously supplied glucose as well as other carbon molecules released by the Cit+ bacteria. After more than 10,000 generations of coexistence, however, the Cit-lineage went extinct; cells with the Cit-phenotype dropped to levels below detection, and the Cit-clade could not be detected by molecular assays based on its unique genotype. We hypothesized that this extinction was a deterministic outcome of evolutionary change within the population, specifically the appearance of a more-fit Cit+ ecotype that competitively excluded the Cit-ecotype. We tested this hypothesis by re-evolving the population from a frozen population sample taken within 500 generations of the extinction and from another sample taken several thousand generations earlier, in each case for 500 generations and with 20-fold replication. To our surprise, the Cit-type did not go extinct in any of these replays, and Cit-cells also persisted in a single replicate that was propagated for 2,500 generations. Even more unexpectedly, we showed that the Cit-ecotype could reinvade the Cit+ population after its extinction. Taken together, these results indicate that the extinction of the Cit-ecotype was not a deterministic outcome driven by competitive exclusion by the Cit+ ecotype. The extinction also cannot be explained by demographic stochasticity alone, as the population size of the Cit-ecotype should have been many thousands of cells even during the daily transfer events. Instead, we infer that the extinction must have been caused by a rare chance event in which some aspect of the experimental conditions was inadvertently perturbed.


Asunto(s)
Ácido Cítrico/metabolismo , Evolución Molecular Dirigida , Escherichia coli/metabolismo , Extinción Biológica , Ecotipo , Escherichia coli/genética , Escherichia coli/fisiología , Genotipo , Fenotipo
9.
Elife ; 42015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26465114

RESUMEN

Evolutionary innovations that enable organisms to colonize new ecological niches are rare compared to gradual evolutionary changes in existing traits. We discovered that key mutations in the gltA gene, which encodes citrate synthase (CS), occurred both before and after Escherichia coli gained the ability to grow aerobically on citrate (Cit(+) phenotype) during the Lenski long-term evolution experiment. The first gltA mutation, which increases CS activity by disrupting NADH-inhibition of this enzyme, is beneficial for growth on the acetate and contributed to preserving the rudimentary Cit(+) trait from extinction when it first evolved. However, after Cit(+) was refined by further mutations, this potentiating gltA mutation became deleterious to fitness. A second wave of beneficial gltA mutations then evolved that reduced CS activity to below the ancestral level. Thus, dynamic reorganization of central metabolism made colonizing this new nutrient niche contingent on both co-opting and overcoming a history of prior adaptation.


Asunto(s)
Adaptación Biológica , Citrato (si)-Sintasa/genética , Citrato (si)-Sintasa/metabolismo , Ácido Cítrico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Mutación , Aerobiosis , Escherichia coli/crecimiento & desarrollo
10.
Elife ; 42015 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-25807083

RESUMEN

E. coli's hardiness, versatility, broad palate and ease of handling have made it the most intensively studied and best understood organism on the planet. However, research on E.coli has primarily examined it as a model organism, one that is abstracted from any natural history. But E. coli is far more than just a microbial lab rat. Rather, it is a highly diverse organism with a complex, multi-faceted niche in the wild. Recent studies of 'wild' E. coli have, for example, revealed a great deal about its presence in the environment, its diversity and genomic evolution, as well as its role in the human microbiome and disease. These findings have shed light on aspects of its biology and ecology that pose far-reaching questions and illustrate how an appreciation of E. coli's natural history can expand its value as a model organism.


Asunto(s)
Biopelículas , Escherichia coli/genética , Escherichia coli/fisiología , Genómica/métodos , Intestinos/microbiología , Animales , Evolución Biológica , Microbiología Ambiental , Escherichia coli/ultraestructura , Interacciones Huésped-Patógeno , Humanos , Microscopía Electrónica de Rastreo
11.
Nature ; 489(7417): 513-8, 2012 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-22992527

RESUMEN

Evolutionary novelties have been important in the history of life, but their origins are usually difficult to examine in detail. We previously described the evolution of a novel trait, aerobic citrate utilization (Cit(+)), in an experimental population of Escherichia coli. Here we analyse genome sequences to investigate the history and genetic basis of this trait. At least three distinct clades coexisted for more than 10,000 generations before its emergence. The Cit(+) trait originated in one clade by a tandem duplication that captured an aerobically expressed promoter for the expression of a previously silent citrate transporter. The clades varied in their propensity to evolve this novel trait, although genotypes able to do so existed in all three clades, implying that multiple potentiating mutations arose during the population's history. Our findings illustrate the importance of promoter capture and altered gene regulation in mediating the exaptation events that often underlie evolutionary innovations.


Asunto(s)
Ácido Cítrico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Evolución Molecular , Genoma Bacteriano/genética , Genómica , Aerobiosis/genética , Ácido Cítrico/farmacología , Análisis Mutacional de ADN , Epistasis Genética , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Glucosa/deficiencia , Glucosa/metabolismo , Glucosa/farmacología , Modelos Genéticos , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Fenotipo , Filogenia , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética
12.
Proc Natl Acad Sci U S A ; 105(23): 7899-906, 2008 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-18524956

RESUMEN

The role of historical contingency in evolution has been much debated, but rarely tested. Twelve initially identical populations of Escherichia coli were founded in 1988 to investigate this issue. They have since evolved in a glucose-limited medium that also contains citrate, which E. coli cannot use as a carbon source under oxic conditions. No population evolved the capacity to exploit citrate for >30,000 generations, although each population tested billions of mutations. A citrate-using (Cit+) variant finally evolved in one population by 31,500 generations, causing an increase in population size and diversity. The long-delayed and unique evolution of this function might indicate the involvement of some extremely rare mutation. Alternately, it may involve an ordinary mutation, but one whose physical occurrence or phenotypic expression is contingent on prior mutations in that population. We tested these hypotheses in experiments that "replayed" evolution from different points in that population's history. We observed no Cit+ mutants among 8.4 x 10(12) ancestral cells, nor among 9 x 10(12) cells from 60 clones sampled in the first 15,000 generations. However, we observed a significantly greater tendency for later clones to evolve Cit+, indicating that some potentiating mutation arose by 20,000 generations. This potentiating change increased the mutation rate to Cit+ but did not cause generalized hypermutability. Thus, the evolution of this phenotype was contingent on the particular history of that population. More generally, we suggest that historical contingency is especially important when it facilitates the evolution of key innovations that are not easily evolved by gradual, cumulative selection.


Asunto(s)
Evolución Biológica , Escherichia coli/metabolismo , Arabinosa/metabolismo , Ácido Cítrico/metabolismo , Células Clonales , Ecosistema , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Modelos Biológicos , Mutación/genética , Fenotipo , Selección Genética
13.
Mol Microbiol ; 55(1): 312-25, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15612937

RESUMEN

Analyses of complete genomes indicate that insertion sequences (ISs) are abundant and widespread in hyperthermophilic archaea, but few experimental studies have measured their activities in these hosts. As a way to investigate the impact of ISs on Sulfolobus genomes, we identified seven transpositionally active ISs in a widely distributed Sulfolobus species, and measured their functional properties. Six of the seven were found to be distinct from previously described ISs of Sulfolobus, and one of the six could not be assigned to any known IS family. A type II 'Miniature Inverted-repeat Transposable Element' (MITE) related to one of the ISs was also recovered. Rates of transposition of the different ISs into the pyrEF region of their host strains varied over a 250-fold range. The Sulfolobus ISs also differed with respect to target-site selectivity, although several shared an apparent preference for the pyrEF promoter region. Despite the number of distinct ISs assayed and their molecular diversity, only one demonstrated precise excision from the chromosomal target region. The fact that this IS is the only one lacking inverted repeats and target-site duplication suggests that the observed precise excision may be promoted by the IS itself. Sequence searches revealed previously unidentified partial copies of the newly identified ISs in the Sulfolobus tokodaii and Sulfolobus solfataricus genomes. The structures of these fragmentary copies suggest several distinct molecular mechanisms which, in the absence of precise excision, inactivate ISs and gradually eliminate the defective copies from Sulfolobus genomes.


Asunto(s)
Cromosomas de Archaea , Elementos Transponibles de ADN/genética , Evolución Molecular , Sulfolobus/genética , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Secuencia de Bases , ADN de Archaea/química , ADN de Archaea/aislamiento & purificación , Datos de Secuencia Molecular , Filogenia , Regiones Promotoras Genéticas , Recombinación Genética , Secuencias Repetitivas de Ácidos Nucleicos , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA