Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 61(18): 6888-6897, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35481778

RESUMEN

Heterobimetallic complexes have attracted much interest due to their broad range of structures and reactivities as well as unique catalytic abilities. Additionally, these complexes can be utilized as single-source precursors for the synthesis of binary intermetallic compounds. An example is the family of bis(pyridine-2-thiolato)dichloro-germanium and tin complexes of group 10 metals (Pd and Pt). The reactivity of these heterobimetallic complexes is highly tunable through substitution of the group 14 element and the neutral ligand bound to the transition metal. Here, we study the binding energies of three different phosphorous-based ligands, PR3 (R = Bu, Ph, and OPh) by density functional theory and restricted Hartree-Fock methods. The PR3 ligand-binding energies follow the trend of PBu3 > PPh3 > P(OPh)3, in agreement with their sigma-bonding ability. These results are confirmed by ligand exchange experiments monitored with 31P NMR spectroscopy, in which a weaker binding PR3 ligand is replaced with a stronger one. Furthermore, we demonstrate that the heterobimetallic complexes are active catalysts in the Negishi coupling reaction, where stronger binding PR3 ligands inhibit access to an active site at the metal center. Similar strategies could be applied to other complexes to better understand their ligand-binding energetics and predict their reactivity as both precursors and catalysts.


Asunto(s)
Germanio , Fosfinas , Elementos de Transición , Ligandos , Elementos de Transición/química
2.
J Am Chem Soc ; 143(23): 8747-8760, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34085812

RESUMEN

Dynamic nuclear polarization (DNP) solid-state NMR (SSNMR) spectroscopy was used to obtain detailed surface structures of zinc blende CdSe nanocrystals (NCs) with plate or spheroidal morphologies which are capped by carboxylic acid ligands. 1D 113Cd and 77Se cross-polarization magic angle spinning (CPMAS) NMR spectra revealed distinct signals from Cd and Se atoms on the surface of the NCs, and those residing in bulk-like environments, below the surface. 113Cd cross-polarization magic-angle-turning (CP-MAT) experiments identified CdSe3O, CdSe2O2, and CdSeO3 Cd coordination environments on the surface of the NCs, where the oxygen atoms are presumably from coordinated carboxylate ligands. The sensitivity gain from DNP enabled natural isotopic abundance 2D homonuclear 113Cd-113Cd and 77Se-77Se and heteronuclear 113Cd-77Se scalar correlation solid-state NMR experiments which revealed the connectivity of the Cd and Se atoms. Importantly, 77Se{113Cd} scalar heteronuclear multiple quantum coherence (J-HMQC) experiments were used to selectively measure one-bond 77Se-113Cd scalar coupling constants (1J(77Se, 113Cd)). With knowledge of 1J(77Se, 113Cd), heteronuclear 77Se{113Cd} spin echo (J-resolved) NMR experiments were used to determine the number of Cd atoms bonded to Se atoms and vice versa. The J-resolved experiments directly confirmed that major Cd and Se surface species have CdSe2O2 and SeCd4 stoichiometries, respectively. Considering the crystal structure of zinc blende CdSe and the similarity of the solid-state NMR data for the platelets and spheroids, we conclude that the surface of the spheroidal CdSe NCs is primarily composed of {100} facets. The methods outlined here will generally be applicable to obtain detailed surface structures of various main group semiconductor nanoparticles.

3.
J Am Chem Soc ; 141(39): 15532-15546, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31456398

RESUMEN

Surface characterization is crucial for understanding how the atomic-level structure affects the chemical and photophysical properties of semiconducting nanoparticles (NPs). Solid-state nuclear magnetic resonance spectroscopy (NMR) is potentially a powerful technique for the characterization of the surface of NPs, but it is hindered by poor sensitivity. Dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS) has previously been demonstrated to enhance the sensitivity of surface-selective solid-state NMR experiments by 1-2 orders of magnitude. Established sample preparations for DNP SENS experiments on NPs require the dilution of the NPs on mesoporous silica. Using hexagonal boron nitride (h-BN) to disperse the NPs doubles DNP enhancements and absolute sensitivity in comparison to standard protocols with mesoporous silica. Alternatively, precipitating the NPs as powders, mixing them with h-BN, and then impregnating the powdered mixture with radical solution leads to further 4-fold sensitivity enhancements by increasing the concentration of NPs in the final sample. This modified procedure provides a factor of 9 improvement in NMR sensitivity in comparison to previously established DNP SENS procedures, enabling challenging homonuclear and heteronuclear 2D NMR experiments on CdS, Si, and Cd3P2 NPs. These experiments allow NMR signals from the surface, subsurface, and core sites to be observed and assigned. For example, we demonstrate the acquisition of DNP-enhanced 2D 113Cd-113Cd correlation NMR experiments on CdS NPs and natural isotropic abundance 2D 13C-29Si HETCOR of functionalized Si NPs. These experiments provide a critical understanding of NP surface structures.

4.
Chemphyschem ; 20(20): 2647-2656, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31441207

RESUMEN

Lead halide perovskites possess unique characteristics that are well-suited for optoelectronic and energy capture devices, however, concerns about their long-term stability remain. Limited stability is often linked to the methylammonium cation, and all-inorganic CsPbX3 (X=Cl, Br, I) perovskite nanocrystals have been reported with improved stability. In this work, the photostability and thermal stability properties of CsPbX3 (X=Cl, Br, I) nanocrystals were investigated by means of electron microscopy, X-ray diffraction, thermogravimetric analysis coupled with FTIR (TGA-FTIR), ensemble and single particle spectral characterization. CsPbBr3 was found to be stable under 1-sun illumination for 16 h in ambient conditions, although single crystal luminescence analysis after illumination using a solar simulator indicates that the luminescence states are changing over time. CsPbBr3 was also stable to heating to 250 °C. Large CsPbI3 crystals (34±5 nm) were shown to be the least stable composition under the same conditions as both XRD reflections and Raman bands diminish under irradiation; and with heating the γ (black) phase reverts to the non-luminescent δ phase. Smaller CsPbI3 nanocrystals (14±2 nm) purified by a different washing strategy exhibited improved photostability with no evidence of crystal growth but were still thermally unstable. Both CsPbCl3 and CsPbBr3 show crystal growth under irradiation or heat, likely with a preferential orientation based on XRD patterns. TGA-FTIR revealed nanocrystal mass loss was only from liberation and subsequent degradation of surface ligands. Encapsulation or other protective strategies should be employed for long-term stability of these materials under conditions of high irradiance or temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA