Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 23(1): 181, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-36038910

RESUMEN

BACKGROUND: RNA-DNA hybrid (R-loop)-associated long noncoding RNAs (lncRNAs), including the Arabidopsis lncRNA AUXIN-REGULATED PROMOTER LOOP (APOLO), are emerging as important regulators of three-dimensional chromatin conformation and gene transcriptional activity. RESULTS: Here, we show that in addition to the PRC1-component LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), APOLO interacts with the methylcytosine-binding protein VARIANT IN METHYLATION 1 (VIM1), a conserved homolog of the mammalian DNA methylation regulator UBIQUITIN-LIKE CONTAINING PHD AND RING FINGER DOMAINS 1 (UHRF1). The APOLO-VIM1-LHP1 complex directly regulates the transcription of the auxin biosynthesis gene YUCCA2 by dynamically determining DNA methylation and H3K27me3 deposition over its promoter during the plant thermomorphogenic response. Strikingly, we demonstrate that the lncRNA UHRF1 Protein Associated Transcript (UPAT), a direct interactor of UHRF1 in humans, can be recognized by VIM1 and LHP1 in plant cells, despite the lack of sequence homology between UPAT and APOLO. In addition, we show that increased levels of APOLO or UPAT hamper VIM1 and LHP1 binding to YUCCA2 promoter and globally alter the Arabidopsis transcriptome in a similar manner. CONCLUSIONS: Collectively, our results uncover a new mechanism in which a plant lncRNA coordinates Polycomb action and DNA methylation through the interaction with VIM1, and indicates that evolutionary unrelated lncRNAs with potentially conserved structures may exert similar functions by interacting with homolog partners.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , ARN Largo no Codificante , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , ADN/metabolismo , Metilación de ADN , Histonas/metabolismo , Humanos , Ácidos Indolacéticos/metabolismo , Plantas/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
2.
Gigascience ; 10(7)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34282452

RESUMEN

BACKGROUND: Deep learning methods have outperformed previous techniques in most computer vision tasks, including image-based plant phenotyping. However, massive data collection of root traits and the development of associated artificial intelligence approaches have been hampered by the inaccessibility of the rhizosphere. Here we present ChronoRoot, a system that combines 3D-printed open-hardware with deep segmentation networks for high temporal resolution phenotyping of plant roots in agarized medium. RESULTS: We developed a novel deep learning-based root extraction method that leverages the latest advances in convolutional neural networks for image segmentation and incorporates temporal consistency into the root system architecture reconstruction process. Automatic extraction of phenotypic parameters from sequences of images allowed a comprehensive characterization of the root system growth dynamics. Furthermore, novel time-associated parameters emerged from the analysis of spectral features derived from temporal signals. CONCLUSIONS: Our work shows that the combination of machine intelligence methods and a 3D-printed device expands the possibilities of root high-throughput phenotyping for genetics and natural variation studies, as well as the screening of clock-related mutants, revealing novel root traits.


Asunto(s)
Inteligencia Artificial , Redes Neurales de la Computación , Fenotipo , Raíces de Plantas , Plantas
3.
Sci Rep ; 11(1): 4093, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33603038

RESUMEN

Carrot (Daucus carota L.) is one of the most cultivated vegetable in the world and of great importance in the human diet. Its storage organs can accumulate large quantities of anthocyanins, metabolites that confer the purple pigmentation to carrot tissues and whose biosynthesis is well characterized. Long non-coding RNAs (lncRNAs) play critical roles in regulating gene expression of various biological processes in plants. In this study, we used a high throughput stranded RNA-seq to identify and analyze the expression profiles of lncRNAs in phloem and xylem root samples using two genotypes with a strong difference in anthocyanin production. We discovered and annotated 8484 new genes, including 2095 new protein-coding and 6373 non-coding transcripts. Moreover, we identified 639 differentially expressed lncRNAs between the phenotypically contrasted genotypes, including certain only detected in a particular tissue. We then established correlations between lncRNAs and anthocyanin biosynthesis genes in order to identify a molecular framework for the differential expression of the pathway between genotypes. A specific natural antisense transcript linked to the DcMYB7 key anthocyanin biosynthetic transcription factor suggested how the regulation of this pathway may have evolved between genotypes.


Asunto(s)
Antocianinas/metabolismo , Daucus carota/metabolismo , Raíces de Plantas/metabolismo , ARN Largo no Codificante/inmunología , Antocianinas/biosíntesis , Daucus carota/genética , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Floema/metabolismo , Transcriptoma , Xilema/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA