Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
3.
Radiology ; 282(2): 418-428, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27253423

RESUMEN

Purpose To determine the impact of three different methods of region of interest (ROI) positioning for apparent diffusion coefficient (ADC) measurements on the assessment of complete response (CR) to neoadjuvant combined chemotherapy and radiation therapy (CRT) in patients with rectal cancer. Materials and Methods Institutional review board approval was obtained for this study; all patients gave written informed consent. ADCs were measured by two radiologists using three circular ROIs (three-ROIs), single-section (SS), and whole-tumor volume (WTV) methods in 62 patients with locally advanced rectal cancer on pre- and post-CRT images. Interobserver variability was analyzed by calculating intraclass correlation coefficient (ICC). Descriptive statistics and areas under the receiver operating characteristic curves (AUCs) were calculated to evaluate performance in determining CR from pre- and post-CRT ADCs and ADC change. Histopathologic tumor regression grade was the reference standard. Results SS and WTV methods yielded higher AUCs than did the three-ROIs method when determining CR from post-CRT ADC (0.874 [95% confidence interval {CI}: 0.778, 0.970] and 0.886 [95% CI: 0.781, 0.990] vs 0.731 [95% CI: 0.583, 0.878], respectively; P = .033 and P = .003) and numeric change (0.892 [95% CI: 0.812, 0.972] and 0.897 [95% CI: 0.801, 0.994] vs 0.740 [95% CI: 0.591, 0.890], respectively; P = .048 and P = .0021). Respective accuracies of SS, WTV, and three-ROIs methods were 79% (49 of 62), 77% (48 of 62), and 61% (38 of 62) for post-CRT, 79% (49 of 62), 86% (53 of 62), and 60% (37 of 62) for numeric ADC change, and 77% (48 of 62), 84% (52 of 62), and 57% (35 of 62) for percentage ADC change (ADC cut-offs: 1.21, 1.30, and 1.05 × 10-3 mm2/sec, 0.33, 0.45, and 0.27 × 10-3 mm2/sec increases, and 40%, 54%, and 27% increases, respectively). Post-CRT and ADC change measurements achieved negative predictive values of 96% (44 of 46) to 100% (39 of 39). Intraobserver agreement was highest for WTV-derived ADCs (ICC, 0.742 [95% CI: 0.316, 0.892] to 0.891 [95% CI: 0.615, 0.956]) and higher for all pretreatment than posttreatment measurements (ICC, 0.761 [95% CI: 0.209, 0.930] and 0.648 [95% CI: 0.164, 0.895] for three-ROIs method, 0.608 [95% CI: 0.287, 0.844] and 0.582 [95% CI: 0.176, 0.870] for SS method, 0.891 [95% CI: 0.615, 0.956] and 0.742 for WTV method [95% CI: 0.316, 0.892]). Conclusion Tumor ADCs are highly dependent on the ROI positioning method used. Larger area measurements yield greater accuracy in response assessment. Post-CRT ADCs and values of ADC changes accurately identify noncomplete responders. WTV measurement of percentage ADC change provides the best results. © RSNA, 2016 An earlier incorrect version of this article appeared online. This article was corrected on September 19, 2016.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/radioterapia , Imagen de Difusión por Resonancia Magnética/métodos , Neoplasias del Recto/tratamiento farmacológico , Neoplasias del Recto/radioterapia , Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/patología , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Persona de Mediana Edad , Terapia Neoadyuvante , Clasificación del Tumor , Estadificación de Neoplasias , Estudios Prospectivos , Neoplasias del Recto/diagnóstico por imagen , Neoplasias del Recto/patología , Resultado del Tratamiento
4.
Br J Radiol ; 89(1064): 20150964, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27331883

RESUMEN

MRI plays an increasingly pivotal role in the clinical staging of rectal cancer in the baseline and post-treatment settings. An accurate evaluation of response to neoadjuvant treatment is crucial because of its major influence on patient management and quality of life. However, evaluation of treatment response is challenging for both imaging and clinical assessments owing to treatment-related inflammation and fibrosis. At one end of the spectrum are clinical yT4 rectal cancers, wherein precise post-treatment MRI evaluation of tumour spread is particularly important for avoiding unnecessary exenterative surgery. At the other extreme, for tumours with clinical near-complete response or clinical complete response to neoadjuvant treatment, less invasive treatment may be suitable instead of the standard surgical approach such as, for example, a "Watch and Wait" approach or perhaps local excision. Ideally, the goal of post-treatment MRI evaluation would be to identify these subgroups of patients so that they might be spared unnecessary surgical intervention. It is known that post-chemoradiation therapy restaging using conventional MR sequences is less accurate than baseline staging, particularly in confirming T0 disease, largely owing to the difficulty in distinguishing fibrosis, oedema and normal mucosa from small foci of residual tumour. However, there is a growing utilization of multiparametric MRI, which has superseded other types of evaluations and requires review and periodic re-evaluation. This commentary discusses the current status of multiparametric MRI in the post-treatment setting and the challenges facing imaging in general in the accurate determination of treatment response.


Asunto(s)
Imagen por Resonancia Magnética , Neoplasias del Recto/diagnóstico por imagen , Neoplasias del Recto/terapia , Quimioradioterapia , Humanos , Terapia Neoadyuvante , Estadificación de Neoplasias , Neoplasias del Recto/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA