Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 20694, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001336

RESUMEN

The invasion of ecosystems by non-native species is recognized as one of the most significant global challenges, particularly in semiarid regions where native biodiversity is already under stress from drought and land degradation. The implicit assumption is that invaders are strong competitors, but a greenhouse pairwise experiment conducted to examine intraspecific and interspecific competition effects of Opuntia ficus-indica, a widespread invader in semiarid ecosystems, with two species native to the highlands of Eritrea, Ricinus communis and Solanum marginatum, revealed that O. ficus-indica is a weak competitor. The unique ability of O. ficus-indica's fallen cladodes to undergo vegetative growth becomes a fundamental trait contributing to its spread. This growth strategy allows O. ficus-indica to outgrow native species and establish a significant presence. In direct interaction, the competition in aboveground productivity measured by the logarithmic response ratio for O. ficus-indica was 3.4-fold and 5.9-fold higher than for R. communis and S. marginatum, respectively. Belowground, the native R. communis was facilitated (- 1.00 ± 0.69) by O. ficus-indica which itself suffered from high competition. This pattern became even more evident under water shortage, where aboveground competition for S. marginatum decreased 5.7-fold, and for O. ficus-indica, it increased 1.4-fold. Despite being a poor competitor, O. ficus-indica outperformed R. communis and S. marginatum in both aboveground (4.3 and 3.8 times more) and belowground (27 and 2.8 times more) biomass production, respectively. The findings of this study challenge the common interpretation that invasive species are strong competitors and highlight the importance of considering other factors, such as productivity and tolerance limits when assessing the potential impacts of invasive species on semiarid ecosystems.


Asunto(s)
Ecosistema , Opuntia , Biomasa , Especies Introducidas , Biodiversidad , Opuntia/metabolismo
2.
Plants (Basel) ; 12(18)2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37765451

RESUMEN

Biological invasions pose global threats to biodiversity and ecosystem functions. Invasive species often display a high degree of phenotypic plasticity, enabling them to adapt to new environments. This study examines plasticity to water stress in native and invasive Opuntia ficus-indica populations, a prevalent invader in arid and semi-arid ecosystems. Through controlled greenhouse experiments, we evaluated three native and nine invasive populations. While all plants survived the dry treatment, natives exhibited lower plasticity to high water availability with only a 36% aboveground biomass increase compared to the invasives with a greater increase of 94%. In terms of belowground biomass, there was no significant response to increased water availability for native populations, but plants from the invasive populations showed a 75% increase from the dry to the wet treatment. Enhanced phenotypic plasticity observed in invasive populations of O. ficus-indica is likely a significant driver of their success and invasiveness across different regions, particularly with a clear environmental preference towards less arid conditions. Climate change is expected to amplify the invasion success due to the expansion of arid areas and desertification. Opuntia ficus-indica adapts to diverse environments, survives dry spells, and grows rapidly in times of high-water supply, making it a candidate for increased invasion potential with climate change.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA