Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 118(3): 377-91, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27443302

RESUMEN

BACKGROUND: Green infrastructure is a strategic network of green spaces designed to deliver ecosystem services to human communities. Green infrastructure is a convenient concept for urban policy makers, but the term is used too generically and with limited understanding of the relative values or benefits of different types of green space and how these complement one another. At a finer scale/more practical level, little consideration is given to the composition of the plant communities, yet this is what ultimately defines the extent of service provision. This paper calls for greater attention to be paid to urban plantings with respect to ecosystem service delivery and for plant science to engage more fully in identifying those plants that promote various services. SCOPE: Many urban plantings are designed based on aesthetics alone, with limited thought on how plant choice/composition provides other ecosystem services. Research is beginning to demonstrate, however, that landscape plants provide a range of important services, such as helping mitigate floods and alleviating heat islands, but that not all species are equally effective. The paper reviews a number of important services and demonstrates how genotype choice radically affects service delivery. CONCLUSIONS: Although research is in its infancy, data are being generated that relate plant traits to specific services, thereby helping identify genotypes that optimize service delivery. The urban environment, however, will become exceedingly bland if future planting is simply restricted to monocultures of a few 'functional' genotypes. Therefore, further information is required on how to design plant communities where the plants identified (1) provide more than a single benefit (multifunctionality), (B) complement each other in maximizing the range of benefits that can be delivered in one location, and (3) continue to maintain public acceptance through diversity. The identification/development of functional landscape plants is an exciting and potentially high-impact arena for plant science.


Asunto(s)
Planificación de Ciudades , Ecosistema , Plantas , Biodiversidad , Conservación de los Recursos Naturales , Inundaciones , Genotipo , Humanos , Salud Pública
2.
Environ Pollut ; 183: 89-95, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23269369

RESUMEN

We investigated the role of urban Holm Oak (Quercus ilex L.) trees as an airborne metal accumulators and metals' environmental fate. Analyses confirmed Pb, Cd, Cu and Zn as a main contaminants in Siena's urban environment; only Pb concentrations decreased significantly compared to earlier surveys. Additionally, we determined chemical composition of tree leaves, litter and topsoil (underneath/outside tree crown) in urban and extra-urban oak stands. Most notably, litter in urban samples collected outside the canopy had significantly lower concentrations of organic matter and higher concentrations of Pb, Cu, Cd and Zn than litter collected underneath the canopy. There was a greater metals' accumulation in topsoil, in samples collected under the tree canopy and especially near the trunk ('stemflow area'). Thus, in urban ecosystems the Holm Oak stands likely increase the soil capability to bind metals.


Asunto(s)
Contaminantes Atmosféricos/análisis , Quercus/química , Contaminantes del Suelo/análisis , Oligoelementos/análisis , Biodegradación Ambiental , Monitoreo del Ambiente , Metales/análisis , Hojas de la Planta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA