Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(2): e0288948, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38359003

RESUMEN

Swimmer's itch (SI) is a dermatitis in humans caused by cercariae of avian and mammalian schistosomes which emerge from infected snails on a daily basis. Mitigation methods for SI have long been sought with little success. Copper sulfate application to the water to kill the snail hosts is the historically employed method, but is localized, temporary, and harmful to many aquatic species. Here, we test an alternative method to control Trichobilharzia stagnicolae, a species well-known to cause SI in northern Michigan and elsewhere in North America. Summer relocation of broods of the only known vertebrate host, common merganser (Mergus merganser), greatly reduced snail infection prevalence the following year on two large, geographically separated lakes in northern Michigan. Subsequent years of host relocation achieved and maintained snail infection prevalence at ~0.05%, more than an order of magnitude lower than pre-intervention. A Before-After-Control-Intervention (BACI) study design using multiple-year snail infection data from two intervention lakes and three control lakes demonstrates that dramatic lake-wide reduction of an avian schistosome can be achieved and is not due to natural fluctuations in the parasite populations. The relevance of reducing snail infection prevalence is demonstrated by a large seven-year data set of SI incidence in swimmers at a high-use beach, which showed a substantial reduction in SI cases in two successive years after relocation began. In addition, data from another Michigan lake where vertebrate-host based intervention occurred in the 1980's are analyzed statistically and show a remarkably similar pattern of reduction in snail infection prevalence. Together, these results demonstrate a highly effective SI mitigation strategy that avoids the use of environmentally suspect chemicals and removes incentive for lethal host removal. Biologically, the results strongly suggest that T. stagnicolae is reliant on the yearly hatch of ducklings to maintain populations at high levels on a lake and that the role of migratory hosts in the spring and fall is much less significant.


Asunto(s)
Dermatitis , Schistosomatidae , Esquistosomiasis , Enfermedades Cutáneas Parasitarias , Infecciones por Trematodos , Animales , Humanos , Lagos/parasitología , Infecciones por Trematodos/parasitología , Esquistosomiasis/epidemiología , Enfermedades Cutáneas Parasitarias/etiología , Enfermedades Cutáneas Parasitarias/parasitología , Patos , Caracoles/parasitología , Mamíferos
2.
Pathogens ; 11(6)2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35745505

RESUMEN

A novel schistosome from Planorbella snails currently known as avian schistosomatid sp. C (ASC) was recently described as being capable of causing the papules associated with swimmer's itch. We conducted a paired study with 24 human volunteers, exposing each of their forearms to five drops of water containing cercariae of ASC or Trichobilharzia stagnicolae, and examined the skin for papules 1-3 days later. A mixed effects model showed that only the parasite species significantly affected the number of papules, while prior experimental exposure, swimming history, and swimmer's itch experience did not. The total number of papules produced by the two species were very different: ASC produced a total of 2 papules from the 298 cercariae used, compared to 49 papules from 160 T. stagnicolae cercariae, a difference factor of more than 43X, which was comparable to the odds ratio of 45.5 computed using the statistical model. A well-known agent of swimmer's itch, T. stagnicolae, is able to penetrate human skin more frequently than ASC, likely meaning that ASC is only a minor cause of swimmer's itch where T. stagnicolae is present. We also completed limited experiments that compared the cercarial behavior of the two species in vitro and in situ. A known stimulant of schistosome cercarial penetration, α-linolenic acid, did not stimulate ASC cercariae to initiate penetration-associated behaviors as frequently as T. stagnicolae. However, when placed on esophageal tissue of the known vertebrate host for ASC, Canada goose (Branta canadensis), ASC cercariae were observed penetrating the esophageal epithelium quickly, whereas T. stagnicolae cercariae did not exhibit any penetration behaviors.

3.
Ecohealth ; 15(4): 827-839, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30120669

RESUMEN

Swimmer's itch (cercarial dermatitis) is a nuisance encountered by bathers and recreational water users worldwide. The condition is caused by the penetration of larval digenean trematodes (cercariae) of the family Schistosomatidae, into the skin, following their release into freshwater from pulmonate snails that serve as the intermediate hosts for these parasites. This study utilizes qPCR-based cercariometry to monitor and quantify cercariae from water samples collected at 5 lakes in northern Michigan. The resolution provided by qPCR facilitated assessment of the environmental and biological drivers of swimmer's itch-causing cercariae concentrations, allowing us to demonstrate that cercarial abundance is greatest at the top of the water column, in locations with prevailing on- and alongshore winds.


Asunto(s)
Cercarias/genética , Cercarias/aislamiento & purificación , Dermatitis/parasitología , Lagos/parasitología , Reacción en Cadena en Tiempo Real de la Polimerasa , Schistosomatidae/genética , Schistosomatidae/aislamiento & purificación , Animales , Enfermedades de las Aves/parasitología , Exposición a Riesgos Ambientales , Monitoreo del Ambiente/métodos , Humanos , Michigan , Infecciones por Trematodos/parasitología
4.
Int J Parasitol Parasites Wildl ; 7(2): 171-179, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29988865

RESUMEN

Histologic studies of fish from Douglas Lake, Cheboygan County, Michigan, USA show that Diplostomum spp. infect the lens of spottail shiners (Notropis hudsonius) and common shiners (Luxilus cornutus). In contrast, infection was confined to the choroidal vasculature of yellow perch (Perca flavescens), and the morphology of the pigment epithelium and retina in regions adjacent to the metacercariae was abnormal. The difference in location of metacercariae within the host suggested that different Diplostomum species may infect shiners and perch in Douglas Lake. Species diversity was investigated by sequencing the barcode region of the cytochrome oxidase I gene of metacercariae. Four species of Diplostomum were identified, all four of which were present in shiner lenses; however, only Diplostomum baeri was present in the perch choroid. To determine whether infection of perch eyes affects the response of the retina to a light stimulus, electroretinograms (ERG) were recorded. The amplitude of the b-wave of the ERG was reduced and the b-wave latency was increased in infected perch, as compared to uninfected eyes, and the flicker-fusion frequency was also reduced. Infection of the yellow perch choroid by Diplostomum baeri, which shows strong host and tissue specificity, has an adverse effect on retinal function, lending support to the hypothesis that parasite-induced impairment of host vision may afford Diplostomum baeri the evolutionary benefit of increasing the likelihood of transmission, via host fish predation, to its definitive avian host.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA