RESUMEN
The present study evaluates the chemical compositions and antioxidant and antipathogenic properties of commercial orange (Citrus sinensis (L.) Osbeck) essential oils obtained using the cold-press method (EOP) and the cold-press method followed by steam distillation (EOPD). The chemical compositions of the volatilizable fractions, determined by gas chromatography-mass spectrometry, were similar in both samples. A relatively large amount of γ-terpinene was found in the EOPD (1.75%) as compared to the EOP (0.84%). Monoterpene hydrocarbons with limonene (90.4-89.8%) followed by myrcene (3.2-3.1%) as the main compounds comprised the principal phytochemical group. The non-volatile phenolics were eight times higher in the EOP than in the EOPD. Several assays with different specificity levels were used to study the antioxidant activity. Although both essential oils presented similar reducing capacities, the radical elimination ability was higher for the EOP. Regarding the antipathogenic properties, the EOs inhibited the biomass and cell viability of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Furthermore, both EOs similarly attenuated the production of elastase, pyocyanin, and quorum-sensing autoinducers as assessed using Gram-negative bacteria. The EOP and EOPD showed important antioxidant and antipathogenic properties, so they could represent natural alternatives to extend the shelf life of food products by preventing oxidation and contamination caused by microbial spoilage.
RESUMEN
Citrus essential oils are used in food to confer flavor and aromas. The citrus essential oils have been granted as GRAS and could be used as antimicrobial additives to control bacterial quorum sensing from potential food bacterial pathogens. The chemical composition and inhibitory activity of Citrus paradisi (grapefruit) essential oils obtained by cold-pressed method (EOP) and cold-pressed method followed by steam distillation, against Pseudomonas aeruginosa were determined. The GC-MS analyses of the oil indicated the amount of the essential oil components was highest with D-limonene in both cases. However, the extraction method modified the chemical composition. EOP had higher amount of coumarins and flavonoid as well as less oxygenated terpenoids. At 0.1 mg/mL essential oils were not able to modify the bacterial development but inhibited the P. aeruginosa biofilm production between 52% and 55%, sessile viability between 45% and 48%, autoinducer production and elastase activity between 30% and 56%. Limonene was less effective at inhibiting P. aeruginosa than the essential oils, suggesting a synergistic effect of the minor components. According to our results, grapefruit essential oils could be used as a food preservative to control P. aeruginosa virulence.