Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Qual ; 51(4): 521-539, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35245399

RESUMEN

The manureshed represents cropland needed to safely assimilate manure nutrients from an animal feeding operation. Dairy manuresheds can be contained on-farm but may need to involve additional farms that can assimilate excess nutrients. We present case studies reviewing challenges and opportunities to manureshed management in four major dairy-producing states using available information on local manuresheds. Additionally, geographic information system software was used with data from regulated Minnesota dairies to assess cropland assimilative capacities and transport needs surrounding large dairies. Manureshed requirements vary across regions, but increased import of feed and soil phosphorus accumulation constrain on-farm manure utilization across the United States. In Minnesota, a growing proportion of Jersey cattle and differences in continuous corn (Zea mays L.) vs. corn-alfafa (Medicago sativa L.) rotations contribute to the amount of land needed to absorb dairy manure nutrients. Farm-gate budgets reveal that N-based manuresheds can be contained within Idaho dairies, but P-based manuresheds extend beyond the farm. In New Mexico, relocation of surplus manure nutrients off the farm is common via informal networks, but incentives to strengthen these networks could ensure sustainable manureshed management. Evaluation of manureshed requirements in Pennsylvania is often complicated by the need for additional nutrient management planning and greater understanding of nutrient balances on the preponderance of small dairies. Nutrient imbalances with highly concentrated dairy production often lead to the need for manure transport off-farm. However, advances in herd and cropland management offer opportunities to improve on-farm nutrient efficiencies, and emerging networks and technologies promise to facilitate manure export when needed.


Asunto(s)
Industria Lechera , Estiércol , Alimentación Animal/análisis , Animales , Bovinos , Fósforo/análisis , Suelo , Estados Unidos , Zea mays
2.
Sci Total Environ ; 793: 148510, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34328956

RESUMEN

Dairy manure is commonly applied to irrigated agricultural crops in the Magic Valley Region of southern Idaho, which has reported to impact the quality of surface and ground water. In this study, we used the Root Zone Water Quality Model (RZWQM2) to provide information about the long-term implications of manure applications. RZWQM2 was first calibrated and validated using 4 years of data from a long-term study with annual and biennial manure application rates of 18 Mg ha-1, 36 Mg ha-1, and 52 Mg ha-1, along with a control and conventional fertilizer treatment for crop yield, soil water and soil N. The 4-yr crop rotation was spring wheat (2013), potato (2014), spring barley (2015), and sugar beets (2016). RZWQM2 simulated soil water content, crop yield, total soil nitrogen, and soil nitrogen mineralization effectively as PBIAS and RRMSE for soil water content and crop yields were within the acceptable range (±25% for PBIAS and <1.0 for RRMSE). Nitrate in the soil profile was overestimated, however in the acceptable range for the validation treatments. The calibrated model was then run for 16 years by repeating the management practices of the 4-year scenarios (4 crop rotations) for all treatments and 24 years for the 52 T Annual treatment (6 crop rotations). The 16-year simulation results showed that nitrogen seepage from annual manure treatments (for example, 18 T Annual vs 18 T Biennial) was 2.0 to 2.3 times higher than the nitrogen seepage from the biennial manure treatments. Increasing manure applications from 18 T Annual to 52 T Annual increased N seepage an average of 3.2 times for the 16-year rotation. Nitrogen seepage increased dramatically in rotations 3 and 4 compared to rotations 1 and 2 in the sixteen-year simulation. The 24-year simulation results showed after manure had been applied annually for 16 years and then applications terminated, the amount of N seepage returned initial levels in 8 years. In conclusion, to maintain clean ground water, manure applications would be best applied biennially, and high applications should be discouraged.


Asunto(s)
Estiércol , Suelo , Agricultura , Producción de Cultivos , Fertilizantes/análisis , Nitrógeno/análisis
3.
Front Microbiol ; 12: 660697, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054760

RESUMEN

Irrigation return flows (IRFs) collect surface runoff and subsurface drainage, causing them to have elevated contaminant and bacterial levels, and making them a potential source of pollutants. The purpose of this study was to determine antimicrobial susceptibility among Escherichia coli and enterococcal isolates that were collected from IRFs in a south-central Idaho watershed. Environmental isolates can be a potentially important source of antimicrobial resistance (AMR) and IRFs may be one way resistance genes are transported out of agroecosystems. Water samples were collected from nine IRFs and one background site (canal water from Snake River) on a biweekly basis during 2018. Escherichia coli and enterococci were enumerated via a most probable number (MPN) technique, then subsamples were plated on selective media to obtain isolates. Isolates of E. coli (187) or enterococci (185) were tested for antimicrobial susceptibility using Sensititre broth microdilution plates. For E. coli, 13% (25/187) of isolates were resistant to tetracycline, with fewer numbers being resistant to 13 other antimicrobials, with none resistant to gentamicin. While 75% (141/187) of the E. coli isolates were pan-susceptible, 12 multidrug resistance (MDR) patterns with 17 isolates exhibiting resistance to up to seven drug classes (10 antimicrobials). For the enterococcal species, only 9% (16/185) of isolates were pan-susceptible and the single highest resistance was to lincomycin (138/185; 75%) followed by nitrofurantoin (56/185; 30%) and quinupristin/dalfopristin (34/185; 18%). In addition, 13 enterococcal isolates belonging to Enterococcus faecalis, Enterococcus faecium, Enterococcus casseliflavus, and Enterococcus thailandicus, were determined to be MDR to up to six different antimicrobial drug classes. None of the enterococcal isolates were resistant to gentamycin, linezolid, tigecycline, and vancomycin.

4.
Environ Pollut ; 257: 113568, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31733967

RESUMEN

Surface waters could be a dominant route by which antibiotic resistance genes (ARGs) are disseminated. In the present study we explored the prevalence and abundance of ARGs [blaCTX-M-1, erm(B), sul1, tet(B), tet(M), and tet(X)], class 1 integron-integrase gene (intI1), and IncP-1 and IncQ-1 plasmids in eight irrigation return flows (IRFs) and a background site (Main Line Canal, MLC) in the Upper Snake Rock watershed in southern Idaho. Grab samples were collected on a monthly basis for a calendar year, which were processed to extract microbial DNA, followed by droplet digital PCR to quantify the gene copies on an absolute (per 100 mL) and relative (per 16S rRNA gene copies) basis. The antibiotic resistance and intI1 genes and IncP-1/IncQ-1 plasmids were recovered at all IRF sampling sites with detections ranging from 55 to 81 out of 81 water sampling events. The blaCTX-M-1 gene was detected the least frequently (68%), while the other genes were detected more frequently (88-100%). All of the genes were also detected at MLC from April to Oct when water was present in the canal. The genes from lowest to greatest relative abundance in the IRFs were: blaCTX-M-1 < erm(B) < tet(B) < IncQ-1 < tet(M) < sul1 < intI1 = IncP-1 < tet(X). When compared to the average annual relative gene abundances in MLC water samples, they were found to be at statistically greater levels (P ≤ 0.008) except that of the IncP-1 and IncQ-1 plasmids (P = 0.8 and 0.08, respectively). The fact that most IRFs contained higher levels than found in the canal water, indicates that IRFs can be a point source of ARGs that ultimately discharge into surface waters.


Asunto(s)
Farmacorresistencia Microbiana/genética , Monitoreo del Ambiente , Genes Microbianos , Riego Agrícola , Genes Bacterianos , Integrones/genética , Plásmidos , ARN Ribosómico 16S/genética
5.
J Environ Qual ; 46(6): 1455-1461, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29293847

RESUMEN

The polar organic compound integrative sampler (POCIS) is a tool that has been effectively used to passively sample organic pollutants over long periods in aquatic environments. In this study, POCIS were used to investigate the spatial and temporal occurrence of 21 antibiotics in irrigation return flows and upstream sites of an intensively managed agricultural watershed in south-central Idaho. The antibiotic metabolite, erythromycin-HO, and the antibiotics monensin, oxytetracycline, sulfadimethoxine, sulfamethazine, sulfamethoxazole, trimethoprim, and tylosin were detected at frequencies ranging from 3.1 to 62.5%, with monensin having the highest rate of detection. The fact that monensin was the most frequently detected compound indicates that it is entering return flows in runoff from fields that had received livestock manure or wastewater. Antibiotics (except oxytetracycline, sulfamethazine, and tylosin) were also detected at an upstream site that consisted of diverted Snake River water and is the source of irrigation water for the watershed. Therefore, even cropped soils that are not treated with manure are still receiving low-level antibiotics during irrigation events. This study provides the first set of evidence that surface waters within this agricultural watershed contain antibiotic residues associated with veterinary and human uses.


Asunto(s)
Antibacterianos/análisis , Aguas Residuales , Contaminantes Químicos del Agua/análisis , Agricultura , Monitoreo del Ambiente , Humanos , Idaho
6.
J Environ Qual ; 44(2): 552-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26023974

RESUMEN

Watersheds using surface water for irrigation often return a portion of the water to a water body. This irrigation return flow often includes sediment and nutrients that reduce the quality of the receiving water body. Research in the 82,000-ha Upper Snake Rock (USR) watershed from 2005 to 2008 showed that, on average, water diverted from the Snake River annually supplied 547 kg ha of total suspended solids (TSS), 1.1 kg ha of total P (TP), and 0.50 kg ha of dissolved P (DP) to the irrigation tract. Irrigation return flow from the USR watershed contributed 414 kg ha of TSS, 0.71 kg ha of TP, and 0.32 kg ha of DP back to the Snake River. Significantly more TP flowed into the watershed than returned to the Snake River, whereas there was no significant difference between inflow and return flow loads for TSS and DP. Average TSS and TP concentrations in return flow were 71 and 0.12 mg L, respectively, which exceeded the TMDL limits of 52 mg L TSS and 0.075 mg L TP set for this section of the Snake River. Monitoring inflow and outflow for five water quality ponds constructed to reduce sediment and P losses from the watershed showed that TSS concentrations were reduced 36 to 75%, but DP concentrations were reduced only 7 to 16%. This research showed that continued implementation of conservation practices should result in irrigation return flow from the USR watershed meeting the total maximum daily load limits for the Snake River.

7.
J Environ Qual ; 42(1): 10-20, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23673734

RESUMEN

Concentrated dairy operations emit trace gases such as ammonia (NH), methane (CH), and nitrous oxide (NO) to the atmosphere. The implementation of air quality regulations in livestock-producing states increases the need for accurate on-farm determination of emission rates. Our objective was to determine the emission rates of NH, CH, and NO from the open-freestall and wastewater pond source areas on a commercial dairy in southern Idaho using a flush system with anaerobic digestion. Gas concentrations and wind statistics were measured and used with an inverse dispersion model to calculate emission rates. Average emissions per cow per day from the open-freestall source area were 0.08 kg NH, 0.41 kg CH, and 0.02 kg NO. Average emissions from the wastewater ponds (g m d) were 6.8 NH, 22 CH, and 0.2 NO. The combined emissions on a per cow per day basis from the open-freestall and wastewater pond areas averaged 0.20 kg NH and 0.75 kg CH. Combined NO emissions were not calculated due to limited available data. The wastewater ponds were the greatest source of total farm NH emissions (67%) in spring and summer. The emissions of CH were approximately equal from the two source areas in spring and summer. During the late fall and winter months, the open-freestall area constituted the greatest source area of NH and CH emissions. Data from this study can be used to develop trace gas emissions factors from open-freestall dairies in southern Idaho and other open-freestall production systems in similar climatic regions.


Asunto(s)
Amoníaco , Dióxido de Carbono , Animales , Idaho , Metano , Óxido Nitroso
8.
J Environ Qual ; 40(5): 1383-94, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21869500

RESUMEN

Concentrated animal feeding operations emit trace gases such as ammonia (NH3), methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O). The implementation of air quality regulations in livestock-producing states increases the need for accurate on-farm determination of emission rates. The objective of this study was to determine the emission rates of NH3, CH4, CO2, and N2O from three source areas (open lots, wastewater pond, compost) on a commercial dairy located in southern Idaho. Gas concentrations and wind statistics were measured each month and used with an inverse dispersion model to calculate emission rates. Average emissions per cow per day from the open lots were 0.13 kg NH3, 0.49 kg CH4, 28.1 kg CO2, and 0.01 kg N2O. Average emissions from the wastewater pond (g m(-2) d(-1)) were 2.0 g NH3, 103 g CH4, 637 g CO2, and 0.49 g N2O. Average emissions from the compost facility (g m(-2) d(-1)) were 1.6 g NH3, 13.5 g CH4, 516 g CO2, and 0.90 g N2O. The combined emissions of NH3, CH4, CO2, and N2O from the lots, wastewater pond and compost averaged 0.15, 1.4, 30.0, and 0.02 kg cow(-1) d(-1), respectively. The open lot areas generated the greatest emissions of NH3, CO2, and N2O, contributing 78, 80, and 57%, respectively, to total farm emissions. Methane emissions were greatest from the lots in the spring (74% of total), after which the wastewater pond became the largest source of emissions (55% of total) for the remainder of the year. Data from this study can be used to develop trace gas emissions factors from open-lot dairies in southern Idaho and potentially other open-lot production systems in similar climatic regions.


Asunto(s)
Amoníaco/análisis , Dióxido de Carbono/análisis , Industria Lechera , Estiércol , Metano/análisis , Óxido Nitroso/análisis , Animales , Bovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA