RESUMEN
Research background: The extensive cultivation of bananas (Musa sp.) is related to producing tons of residues, such as leaves, pseudostems and bracts (inflorescences). The banana bract is a commercially interesting residue due to its dietary fibre content and high antioxidant potential. With this in mind, this study evaluates the effects of administering banana bract flour in animal models fed a cafeteria diet. Experimental approach: Thirty-two male rats were divided into 4 groups: (i) control diet, (ii) control diet with 10 % banana bract flour, (iii) hypercaloric diet, and (iv) hypercaloric diet with 10 % bract banana flour. The study was conducted for 12 weeks and included analysis of phenolic compounds, assessment of the antioxidant effect of banana bract flour, determination of serum biochemical parameters (glucose, total cholesterol, triglycerides, aspartate aminotransferase (AST), alanine transaminase (ALT), amylase, albumin, uric acid, creatine, total protein, and oral glucose), determination of faecal fat content, and histomorphological analysis of the liver, pancreas and adipose tissue. In addition, molecular parameters such as IL6, total and phosphorylated JNK, total and phosphorylated IKKß, TNFα, TLR4 and HSP70 were determined. Results and conclusions: The banana bract flour showed a high content of phenolic compounds and an antioxidant effect. The in vivo results suggest that the supplementation of a hypercaloric diet with banana bract flour prevented pathological damage by reducing total cholesterol and glucose amounts, which may imply a hepatoprotective effect of this supplement. Thus, using banana bract flour as a supplement can increase the consumption of fibre, antioxidants and bioactive compounds. Novelty and scientific contribution: The development of flour from banana waste and its inclusion in the diet can prevent and/or help treat obesity. In addition, the use of banana bracts can help protect the environment, as they are considered a source of waste by the food industry.
RESUMEN
BACKGROUND: Colorectal cancer is a highly prevalent disease, requiring effective strategies for prevention and treatment. The present research aimed to formulate a natural fiber-rich food product (NFRFP) and to evaluate its safety, toxicogenetics, and effects on aberrant crypt foci induced by 1,2-dimethyl-hydrazine in a preclinical model. METHODS: A total of 78 male Wistar rats were distributed in six experimental groups: negative control, positive control (1,2-Dimethylhydrazine-40 mg/Kg), and four groups fed with 10% NFRFP: NFRFP, pre-treatment protocol, simultaneous treatment, and post-treatment protocol. RESULTS: The NFRFP was shown to be a good source of fibers and did not change biometric, biochemical, hematological, and inflammatory parameters, and did not induce signs of toxicity and genotoxicity/carcinogenicity. NFRFP exhibited a chemopreventive effect, in all protocols, with damage reduction (% DR) of 75% in the comet test. NFRFP reduced the incidence of aberrant crypt outbreaks by 49.36% in the post-treatment protocol. CONCLUSIONS: The results suggest the applicability of NFRFP in the human diet due to potential production at an industrial scale and easy technological application in different products, since it could be incorporated in food without altering or causing small changes in final product sensory characteristics.