Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 196(8): 742, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39017725

RESUMEN

Fish is among the most affordable and readily available protein sources for communities residing near water bodies. However, the recent pollution status of aquatic ecosystems has rendered fish consumption risky for human health. The study evaluated metal levels in the liver, gill, and muscle tissues of Redbreast tilapia (Coptodon rendalli) from Inanda and Nagle dams in the uMgeni River system. Metals, Al, Sb, Cd, Cr, Fe, Mn, Mo, Pb, and Zn were analysed using ICP-OES. Fish size showed no significant difference between the two dams (p > 0.05) whereas a descending trend liver > gill > muscle was observed for most metal levels at both dams. Moreover, there was a clear separation for metal levels in the liver, gill, and muscle between the two dams (p < 0.001) and a similar trend was observed for organs in each dam (p < 0.001). No relationship was observed between fish length and metal levels and no definite trend was observed for inter-metal relationships. Antimony, Cr, and Pb showed THQs greater than 1 at both dams which suggests health risks for consumers. Molybdenum has also shown a concerning THQs with some individuals exhibiting values ranging from 0.5 - 0.9. These findings suggest that consuming C. rendalli from the Inanda and Nagle dams could result in adverse health effects from Sb, Cr and Pb.


Asunto(s)
Monitoreo del Ambiente , Hígado , Metales , Ríos , Contaminantes Químicos del Agua , Animales , Ríos/química , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Hígado/química , Hígado/metabolismo , Metales/análisis , Metalurgia , Tilapia/metabolismo , Branquias/metabolismo , Branquias/química , Músculos/química , Músculos/metabolismo , Metales Pesados/análisis
2.
Curr Med Chem ; 24(37): 4180-4212, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28707584

RESUMEN

Tuberculosis (TB) accounts for millions of deaths worldwide every year. Diverse survival strategies adopted by Mycobacterium tuberculosis (Mtb) have substantially hindered the existing anti-TB regimen thereby leading to multidrug-resistant (MDR) and extremely drug-resistant (XDR) strains of TB. The steady decrease in current antibiotics' efficacy against these adversities is an indicator that their adequate replenishment in future is almost impossible, placing society on the precipice of a catastrophe. Over the past many years, researchers have been continuously generating new armamentarium of anti- TB drugs by tailoring the properties of available drugs or designing completely new agents. One of these emerging and successful synthetic techniques is molecular hybridization (MH) that involves the integration of different pharmacophoric subunits to form a new prototype with the ability to be recognized by multiple receptors. In most cases, the resultant conjugates have been reported to exhibit superior biological activity profiles relative to their parent molecules which is attributed to their different or dual modes of action. Accordingly, several new effective anti-TB scaffolds have been synthesized using this approach, and are well cited in literature. In this review, we provide a summarized account of the chemical strategies optimistically focused to develop new molecular assemblies for TB via MH approaches. Additionally, the structure activity relationships revealed from different biological assays is systematically discussed.

3.
Water Sci Technol ; 75(1-2): 84-93, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28067649

RESUMEN

The present study describes an improvement in the current electrocoagulation treatment process and focuses on a comparative study for the clean-up of laundry wastewater (LWW) after each wash and rinse cycle by biological and electrocoagulation treatment methods. For biological treatment, the wastewater was treated with a Bacillus strain of aerobic bacteria especially suited for the degradation of fats, lipids, protein, detergents and hydrocarbons. Treatment of the LWW by electrocoagulation involved the oxidation of aluminium metal upon the application of a controlled voltage which produces various aluminium hydroxy species capable of adsorbing pollutants from the wastewater. The efficiency of the clean-up of LWW using each method was assessed by determination of surfactant concentration, chemical oxygen demand and total dissolved solids. A rapid decrease in surfactant concentration was noted within 0.5 hour of electrocoagulation, whereas a notable decrease in the surfactant concentration was observed only after 12 hour of biological treatment. The rapid generation of aluminium hydroxy species in the electrocoagulation cell allowed adsorption of pollutants at a faster rate when compared to the aerobic degradation of the surfactant; hence a reduced period of time is required for treatment of LWW by electrocoagulation.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Adsorción , Aluminio , Bacillus/metabolismo , Biodegradación Ambiental , Análisis de la Demanda Biológica de Oxígeno , Electrocoagulación/métodos , Tensoactivos , Eliminación de Residuos Líquidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA