Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Nutr ; 62(2): 1041-1050, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36385314

RESUMEN

PURPOSE: This study investigated the influence of the different genotypes of ADORA2A (1976 C > T, rs 5751876), alone or pooled with CYP1A2 (163 C > A rs 762551) genotypes, on the ergogenic effects of caffeine (CAF) on various aspects of physical performance in male adolescent athletes. METHODS: Ninety male adolescent athletes (age = 15.5 ± 2 years) were classified according to their genotypes for 1976 C > T ADORA2A (TT homozygous or CADORA2A allele carriers) and 163 C > A CYP1A2 (AA homozygous or CCYP1A2 allele carriers). Participants were further divided in four groups (1-TTADORA2A + AACYP1A2; 2-TTADORA2A + AC/CCCYP1A2; 3-AACYP1A2 + CT/CCADORA2A;4-AC/CCCYP1A2 + CT/CCADORA2A). Using a randomized, crossover, counterbalanced, and double-blind design, participants ingested CAF (6 mg kg-1) or a placebo (PLA, 300 mg of cellulose) one hour before performing a sequence of physical tests: handgrip strength, agility test, countermovement jump (CMJ), Spike Jump (SJ), sit-ups, push-ups, and the Yo-Yo intermittent recovery test level 1 (Yo-Yo IR1). RESULTS: CAF enhanced handgrip strength (CAF: 35.0 ± 9.2 kg force; PLA: 33.5 ± 8.9 kg force; p = 0.050), CMJ height (CAF: 49.6 ± 12.3 cm; PLA: 48.3 ± 13.6 cm; p = 0.013), SJ height (CAF: 54.7 ± 13.3 cm; PLA: 53.1 ± 14.8 cm; p = 0.013), number of sit-ups (CAF: 37 ± 8; PLA: 35 ± 8; p = 0.001), and distance covered on the Yoyo IR1 test (CAF: 991.6 ± 371.0 m; PLA: 896.0 ± 311.0 m; p = 0.001), This CAF-induced improvement on exercise performance was, however, independent of genotypes groups (all p > 0.05). CAF had no effect on agility (CAF: 15.8 ± 1.2 s; PLA: 15.9 ± 1.3 s; p = 0.070) and push-up (CAF: 26.6 ± 12.0; PLA: 25.0 ± 11.0; p = 0.280) tests. CONCLUSION: The acute caffeine intake of 6.0 mg.kg-1 improves several aspects of physical performance, which seems to be independent of ADORA2A genotypes, alone or in combination with CYP1A2 genotypes.


Asunto(s)
Rendimiento Atlético , Cafeína , Humanos , Masculino , Adolescente , Citocromo P-450 CYP1A2 , Fuerza de la Mano , Genotipo , Atletas , Método Doble Ciego , Estudios Cruzados , Poliésteres
2.
Scand J Med Sci Sports ; 32(2): 402-413, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34706104

RESUMEN

The study aimed to identify and quantify the metabolites profile and metabolic pathways in human muscle tissue engaged during exhaustive high-intensity cycling exercise. Seven healthy physically active men performed a graded exercise test and an exhaustive supramaximal effort at 115% of maximal aerobic power with muscles biopsies performed in rest and immediately after exhaustion for quantifying of muscle metabolites changes by 1 H-NMR spectroscopy. The time until exhaustion (tlim) recorded was 224.7 ± 35.5 s whereas the muscle pH at exhaustion was 6.48 ± 0.05. A total of 54 metabolites were identified and quantified. The most enriched and impacted pathways included: beta oxidation of very long chain fatty acids, mitochondrial electron transport chain, alanine aspartate, and glutamate metabolism, citric acid cycle, arginine biosynthesis, propanoate metabolism, threonine and 2-oxobutanoate degradation and pyruvate metabolism. In addition, the muscle concentrations in Post exercise, compared to Pre increased significantly (p < 0.0398) for fumarate (42.0%), succinate (101.2%), glucose (249.7%), lactate (122.8%), O-acetylcarnitine (164.7%), glycerol (79.3%), AMP (288.2%), 2-oxobutyrate (121.0%), and methanol (58.5%), whereas decreased significantly (p < 0.010) for creatine phosphate (-70.2%), ADP (-56.5%), carnitine (-33.5%), and glutamate (-42.3%). Only the succinate was significantly correlated with tlim (r = -0.76; p = 0.0497). Besides the classical expected contribution of glycolytic and phosphagen energetic pathways, it was demonstrated that the high-intensity exercise is also associated with pathways indicatives of amino acid and fatty acid oxidation metabolisms, highlighting the inverse relation between changes in the intramuscular succinate levels and tlim.


Asunto(s)
Ejercicio Físico , Músculo Esquelético , Ciclismo , Prueba de Esfuerzo , Humanos , Masculino , Metabolómica
3.
Nutrients ; 13(8)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34444663

RESUMEN

Caffeine is one of the most consumed ergogenic aids around the world. Many studies support the ergogenic effect of caffeine over a large spectrum of exercise types. While the stimulatory effect of caffeine on the central nervous system is the well-accepted mechanism explaining improvements in exercise performance during high-intensity whole-body exercise, in which other physiological systems such as pulmonary, cardiovascular, and muscular systems are maximally activated, a direct effect of caffeine on such systems cannot be ignored. A better understanding of the effects of caffeine on multiple physiological systems during high-intensity whole-body exercise might help to expand its use in different sporting contexts (e.g., competitions in different environments, such as altitude) or even assist the treatment of some diseases (e.g., chronic obstructive pulmonary disease). In the present narrative review, we explore the potential effects of caffeine on the pulmonary, cardiovascular, and muscular systems, and describe how such alterations may interact and thus contribute to the ergogenic effects of caffeine during high-intensity whole-body exercise. This integrative approach provides insights regarding how caffeine influences endurance performance and may drive further studies exploring its mechanisms of action in a broader perspective.


Asunto(s)
Cafeína/farmacología , Fenómenos Fisiológicos Cardiovasculares/efectos de los fármacos , Sistema Nervioso Central/efectos de los fármacos , Ejercicio Físico/fisiología , Pulmón/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Sustancias para Mejorar el Rendimiento/farmacología , Resistencia Física/efectos de los fármacos , Animales , Sistema Nervioso Central/fisiología , Humanos , Pulmón/fisiología , Músculo Esquelético/fisiología
4.
Sports Med ; 51(1): 161-174, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33146851

RESUMEN

BACKGROUND: Cold-water immersion (CWI) is one of the main recovery methods used in sports, and is commonly utilized as a means to expedite the recovery of performance during periods of exercise training. In recent decades, there have been indications that regular CWI use is potentially harmful to resistance training adaptations, and, conversely, potentially beneficial to endurance training adaptations. The current meta-analysis was conducted to assess the effects of the regular CWI use during exercise training on resistance (i.e., strength) and endurance (i.e., aerobic exercise) performance alterations. METHODS: A computerized literature search was conducted, ending on November 25, 2019. The databases searched were MEDLINE, Cochrane Central Register of Controlled Trials, and SPORTDiscus. The selected studies investigated the effects of chronic CWI interventions associated with resistance and endurance training sessions on exercise performance improvements. The criteria for inclusion of studies were: (1) being a controlled investigation; (2) conducted with humans; (3) CWI performed at ≤ 15 °C; (4) being associated with a regular training program; and (5) having performed baseline and post-training assessments. RESULTS: Eight articles were included before the review process. A harmful effect of CWI associated with resistance training was verified for one-repetition maximum, maximum isometric strength, and strength endurance performance (overall standardized mean difference [SMD] = - 0.60; Confidence interval of 95% [CI95%] = - 0.87, - 0.33; p < 0.0001), as well as for Ballistic efforts performance (overall SMD = - 0.61; CI95% = - 1.11, - 0.11; p = 0.02). On the other hand, selected studies verified no effect of CWI associated with endurance training on time-trial (mean power), maximal aerobic power in graded exercise test performance (overall SMD = - 0.07; CI95% = - 0.54, 0.53; p = 0.71), or time-trial performance (duration) (overall SMD = 0.00; CI95% = - 0.58, 0.58; p = 1.00). CONCLUSIONS: The regular use of CWI associated with exercise programs has a deleterious effect on resistance training adaptations but does not appear to affect aerobic exercise performance. TRIAL REGISTRATION: PROSPERO CRD42018098898.


Asunto(s)
Inmersión , Entrenamiento de Fuerza , Adaptación Fisiológica , Frío , Ejercicio Físico , Humanos , Agua
5.
J Appl Physiol (1985) ; 127(3): 713-725, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31246557

RESUMEN

Exercise training performed with lowered muscle glycogen stores can amplify adaptations related to oxidative metabolism, but it is not known if this is affected by the "train-low" strategy used (i.e., once-daily versus twice-a-day training). Fifteen healthy men performed 3 wk of an endurance exercise (100-min) followed by a high-intensity interval exercise 2 (twice-a-day group, n = 8) or 14 h (once-daily group, n = 7) later; therefore, the second training session always started with low muscle glycogen in both groups. Mitochondrial efficiency (state 4 respiration) was improved only for the twice-a-day group (group × training interaction, P < 0.05). However, muscle citrate synthase activity, mitochondria, and lipid area in intermyofibrillar and subsarcolemmal regions, and PGC1α, PPARα, and electron transport chain relative protein abundance were not altered with training in either group (P > 0.05). Markers of aerobic fitness (e.g., peak oxygen uptake) were increased, and plasma lactate, O2 cost, and rating of perceived exertion during a 100-min exercise task were reduced in both groups, although the reduction in rating of perceived exertion was larger in the twice-a-day group (group × time × training interaction, P < 0.05). These findings suggest similar training adaptations with both training low approaches; however, improvements in mitochondrial efficiency and perceived effort seem to be more pronounced with twice-a-day training.NEW & NOTEWORTHY We assessed, for the first time, the differences between two "train-low" strategies (once-daily and twice-a-day) in terms of training-induced molecular, functional, and morphological adaptations. We found that both strategies had similar molecular and morphological adaptations; however, only the twice-a-day strategy increased mitochondrial efficiency and had a superior reduction in the rating of perceived exertion during a constant-load exercise compared with once-daily training. Our findings provide novel insights into skeletal muscle adaptations using the "train-low" strategy.


Asunto(s)
Adaptación Fisiológica , Entrenamiento Aeróbico , Entrenamiento de Intervalos de Alta Intensidad , Mitocondrias Musculares/enzimología , Biogénesis de Organelos , 3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , Adulto , Respiración de la Célula , Citrato (si)-Sintasa/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Voluntarios Sanos , Humanos , Masculino , Mitocondrias Musculares/ultraestructura , Adulto Joven
6.
Front Physiol ; 9: 671, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29922173

RESUMEN

We examined the effect of acute and chronic sprint interval training (SIT), with or without prior caffeine intake, on levels of exercise-induced inflammatory plasma cytokines [interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-α]. Twenty physically-active men ingested either a placebo (n = 10) or caffeine (n = 10) 1 h before each SIT session(13-s × 30-s sprint/15 s of rest) during six training sessions (2 weeks). The early (before, immediately after, and 45 min after the exercise) and late (24 and 48 h after the exercise) cytokine and creatine kinase (CK) responses were analyzed for the first and last training sessions. Plasma IL-6 and IL-10 peaked 45 min after the exercise, and then returned to basal values within 24 h (p < 0.05) in both groups on both occasions (p > 0.05). On both occasions, and for both groups, plasma TNF-α increased from rest to immediately after the exercise and then decreased at 45 min before reaching values at or below basal levels 48 h after the exercise (p < 0.05). Serum CK increased from rest to 24 and 48 h post-exercise in the first training session (p < 0.05), but did not alter in the last training session for the PLA group (p > 0.05). Serum CK was unchanged in both the first and last training sessions for the CAF group (p > 0.05). Two weeks of SIT induced a late decrease in the IL-6/IL-10 ratio (p < 0.05) regardless of caffeine intake, suggesting an improved overall inflammatory status after training. In conclusion, a single session of SIT induces muscle damage that seems to be mitigated by caffeine intake. Two weeks of SIT improves the late SIT-induced muscle damage and inflammatory status, which seems to be independent of caffeine intake.

7.
J Strength Cond Res ; 24(6): 1602-8, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20508465

RESUMEN

This study aimed to determine if the OMNI scale with cycle ergometer pictorial format can be used to estimate perceived exertion threshold (PETOMNI) and nonexhaustive PET (PETOMNI5-8) and to compare and to correlate these PET estimates with PETBorg, PETBorg14-17, and critical power (CP). During different days, 13 men performed 4 different high-intensity constant-loads work bouts until exhaustion on a cycle ergometer using the Borg scale, whereas the OMNI scale was used during the other 4 work bouts using previous constant loads. The PET for both scales was determined by plotting the increasing rates of perceived exertion against power outputs, PET being the intersection point of the regression line. In addition, a hyperbolic relationship between power and time to exhaustion was used to determine CP. The PETOMNI (183+/-36 W) was similar to PETBorg (178+/-46 W), and they were also significantly correlated (r=0.77). The PETOMNI5-8 (175+/-36 W) was similar to PETBorg14-17 (181+/-38 W); however, they were not significantly correlated (r=0.36). All the PET estimates were similar to CPOMNI (167+/-36 W) and CPBorg (169+/-40 W) and also significantly correlated (r=0.79-0.94), excepting PETOMNI5-8 (r=0.46). In conclusion, OMNI cycling scale can be used to estimate PET and CP with high accuracy. However, the nonexhaustive PET derived from the 5-8 range in the OMNI scale did not provide a valid estimate of maximal sustainable power output because of the absence of correlation with PETBorg14-17 and with CP. Therefore, professionals and practitioners can assess the subjects' aerobic fitness through the PET estimation using the OMNI scale during exhaustive tests.


Asunto(s)
Prueba de Esfuerzo/métodos , Esfuerzo Físico/fisiología , Adulto , Humanos , Masculino , Consumo de Oxígeno/fisiología , Percepción/fisiología , Resistencia Física/fisiología , Adulto Joven
8.
Eur J Appl Physiol ; 108(5): 1045-53, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20012450

RESUMEN

The aim of this study was to examine the influence of the performance level of athletes on pacing strategy during a simulated 10-km running race, and the relationship between physiological variables and pacing strategy. Twenty-four male runners performed an incremental exercise test on a treadmill, three 6-min bouts of running at 9, 12 and 15 km h(-1), and a self-paced, 10-km running performance trial; at least 48 h separated each test. Based on 10-km running performance, subjects were divided into terziles, with the lower terzile designated the low-performing (LP) and the upper terzile designated the high-performing (HP) group. For the HP group, the velocity peaked at 18.8 +/- 1.4 km h(-1) in the first 400 m and was higher than the average race velocity (P < 0.05). The velocity then decreased gradually until 2,000 m (P < 0.05), remaining constant until 9,600 m, when it increased again (P < 0.05). The LP group ran the first 400 m at a significantly lower velocity than the HP group (15.6 +/- 1.6 km h(-1); P > 0.05) and this initial velocity was not different from LP average racing velocity (14.5 +/- 0.7 km h(-1)). The velocity then decreased non-significantly until 9,600 m (P > 0.05), followed by an increase at the end (P < 0.05). The peak treadmill running velocity (PV), running economy (RE), lactate threshold (LT) and net blood lactate accumulation at 15 km h(-1) were significantly correlated with the start, middle, last and average velocities during the 10-km race. These results demonstrate that high and low performance runners adopt different pacing strategies during a 10-km race. Furthermore, it appears that important determinants of the chosen pacing strategy include PV, LT and RE.


Asunto(s)
Adaptación Fisiológica/fisiología , Rendimiento Atlético/fisiología , Conducta/fisiología , Carrera/fisiología , Adulto , Atletas , Conducta Competitiva/fisiología , Humanos , Masculino , Consumo de Oxígeno/fisiología , Resistencia Física/fisiología , Esfuerzo Físico , Carrera/psicología , Análisis y Desempeño de Tareas , Factores de Tiempo , Atletismo , Adulto Joven
9.
J Strength Cond Res ; 22(3): 937-43, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18438218

RESUMEN

The purpose of this study was to evaluate a novel procedure, based on the perceived exertion threshold (PET) concept, involving non-exhaustive tests (PET14-17) to estimate critical power (CP), as well as to examine the reproducibility of these indices. Twenty young men performed 2 trials (Trial 1 and Trial 2) of 4 exhaustive predictive tests to estimate CP, PET, and PET14-17. The slope coefficients of the regression lines corresponding to the ratings of perceived exertion (RPE) versus time relationship (y axis) obtained during the predictive tests were plotted against the power outputs (x axis) to estimate PET. PET was calculated as the intersection point of the regression line in the power axis. The 14-17 RPE range of each predictive test was modeled using the same mathematical procedures used to estimate PET14-17. CP was derived from the power-time hyperbolic equation. Analysis of variance revealed no significant differences among CP (189-194 W), PET (190-191 W) and PET14-17, (191-195 W). The correlations between CP and PET (r = 0.87), CP and PET14-17 (r = 0.89), and PET and PET14-17 (r = 0.88) were all strong. Additionally, the bias +/- limits of agreement when plotting CP and PET was -2.16 +/- 31.60 W, and -5.70 +/- 31.21 W when comparing CP and PET14-17. Relatively high reproducibility levels of CP (ICC = 0.96), PET (ICC = 0.85) and PET14-17 (ICC = 0.83) were recorded in the test-retest fashion. It can be concluded that the PET14-17 can be utilized with relatively high accuracy and reproducibility to estimate CP without causing exhaustion in the subjects.


Asunto(s)
Prueba de Esfuerzo/métodos , Tolerancia al Ejercicio/fisiología , Esfuerzo Físico/fisiología , Adulto , Fenómenos Biomecánicos , Metabolismo Energético/fisiología , Ergometría , Humanos , Modelos Lineales , Masculino , Contracción Muscular/fisiología , Fatiga Muscular , Resistencia Física/fisiología , Valor Predictivo de las Pruebas , Probabilidad , Factores de Tiempo , Torque
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA