Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 8(19): 9624-9632, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30386562

RESUMEN

Afforestation is often viewed as the purposeful planting of trees in historically nonforested grasslands, but an unintended consequence is woody encroachment, which should be considered part of the afforestation process. In North America's temperate grassland biome, Eastern redcedar (Juniperus virginiana L.) is a native species used in tree plantings that aggressively invades in the absence of controlling processes. Cedar is a well-studied woody encroacher, but little is known about the degree to which cedar windbreaks, which are advocated for in agroforestry programs, are contributing to woody encroachment, what factors are associated with cedar spread from windbreaks, nor where encroachment from windbreaks is occurring in contemporary social-ecological landscapes. We used remotely sensed imagery to identify the presence and pattern of woody encroachment from windbreaks in the Nebraska Sandhills. We used multimodel inference to compare three classes of models representing three hypotheses about factors that could influence cedar spread: (a) windbreak models based on windbreak structure and design elements; (b) abiotic models focused on local environmental conditions; and (c) landscape models characterizing coupled human-natural features within the broader matrix. Woody encroachment was evident for 23% of sampled windbreaks in the Nebraska Sandhills. Of our candidate models, our inclusive landscape model carried 92% of the model weight. This model indicated that encroachment from windbreaks was more likely near roadways and less likely near farmsteads, other cedar plantings, and waterbodies, highlighting strong social ties to the distribution of woody encroachment from tree plantings across contemporary landscapes. Our model findings indicate where additional investments into cedar control can be prioritized to prevent cedar spread from windbreaks. This approach can serve as a model in other temperate regions to identify where woody encroachment resulting from temperate agroforestry programs is emerging.

2.
Ecol Soc ; 22(1): 1-31, 2017 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-29780427

RESUMEN

In this article we summarize histories of nonlinear, complex interactions among societal, legal, and ecosystem dynamics in six North American water basins, as they respond to changing climate. These case studies were chosen to explore the conditions for emergence of adaptive governance in heavily regulated and developed social-ecological systems nested within a hierarchical governmental system. We summarize resilience assessments conducted in each system to provide a synthesis and reference by the other articles in this special feature. We also present a general framework used to evaluate the interactions between society and ecosystem regimes and the governance regimes chosen to mediate those interactions. The case studies show different ways that adaptive governance may be triggered, facilitated, or constrained by ecological and/or legal processes. The resilience assessments indicate that complex interactions among the governance and ecosystem components of these systems can produce different trajectories, which include patterns of (a) development and stabilization, (b) cycles of crisis and recovery, which includes lurches in adaptation and learning, and (3) periods of innovation, novelty, and transformation. Exploration of cross scale (Panarchy) interactions among levels and sectors of government and society illustrate that they may constrain development trajectories, but may also provide stability during crisis or innovation at smaller scales; create crises, but may also facilitate recovery; and constrain system transformation, but may also provide windows of opportunity in which transformation, and the resources to accomplish it, may occur. The framework is the starting point for our exploration of how law might play a role in enhancing the capacity of social-ecological systems to adapt to climate change.

3.
Ecol Soc ; 22(2): 1-3, 2017 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-29780429

RESUMEN

Adaptive governance must work "on the ground," that is, it must operate through structures and procedures that the people it governs perceive to be legitimate and fair, as well as incorporating processes and substantive goals that are effective in allowing social-ecological systems (SESs) to adapt to climate change and other impacts. To address the continuing and accelerating alterations that climate change is bringing to SESs, adaptive governance generally will require more flexibility than prior governance institutions have often allowed. However, to function as good governance, adaptive governance must pay real attention to the problem of how to balance this increased need for flexibility with continuing governance stability so that it can foster adaptation to change without being perceived or experienced as perpetually destabilizing, disruptive, and unfair. Flexibility and stability serve different purposes in governance, and a variety of tools exist to strike different balances between them while still preserving the governance institution's legitimacy among the people governed. After reviewing those purposes and the implications of climate change for environmental governance, we examine psychological insights into the structuring of adaptive governance and the variety of legal tools available to incorporate those insights into adaptive governance regimes. Because the substantive goals of governance systems will differ among specific systems, we do not purport to comment on what the normative or substantive goals of law should be. Instead, we conclude that attention to process and procedure (including participation), as well as increased use of substantive standards (instead of rules), may allow an increased level of substantive flexibility to operate with legitimacy and fairness, providing the requisite levels of psychological, social, and economic stability needed for communities to adapt successfully to the Anthropocene.

4.
J Environ Manage ; 183(Pt 2): 343-352, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27460215

RESUMEN

Management of natural resources for the production of ecosystem services, which are vital for human well-being, is necessary even when there is uncertainty regarding system response to management action. This uncertainty is the result of incomplete controllability, complex internal feedbacks, and non-linearity that often interferes with desired management outcomes, and insufficient understanding of nature and people. Adaptive management was developed to reduce such uncertainty. We present a framework for the application of adaptive management for ecosystem services that explicitly accounts for cross-scale tradeoffs in the production of ecosystem services. Our framework focuses on identifying key spatiotemporal scales (plot, patch, ecosystem, landscape, and region) that encompass dominant structures and processes in the system, and includes within- and cross-scale dynamics, ecosystem service tradeoffs, and management controllability within and across scales. Resilience theory recognizes that a limited set of ecological processes in a given system regulate ecosystem services, yet our understanding of these processes is poorly understood. If management actions erode or remove these processes, the system may shift into an alternative state unlikely to support the production of desired services. Adaptive management provides a process to assess the underlying within and cross-scale tradeoffs associated with production of ecosystem services while proceeding with management designed to meet the demands of a growing human population.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Biodiversidad , Retroalimentación , Humanos , Incertidumbre , Humedales
5.
J Environ Manage ; 183(Pt 2): 371-378, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27344211

RESUMEN

Ecosystem services provided by soil include regulation of the atmosphere and climate, primary (including agricultural) production, waste processing, decomposition, nutrient conservation, water purification, erosion control, medical resources, pest control, and disease mitigation. The simultaneous production of these multiple services arises from complex interactions among diverse aboveground and belowground communities across multiple scales. When a system is mismanaged, non-linear and persistent losses in ecosystem services can arise. Adaptive management is an approach to management designed to reduce uncertainty as management proceeds. By developing alternative hypotheses, testing these hypotheses and adjusting management in response to outcomes, managers can probe dynamic mechanistic relationships among aboveground and belowground soil system components. In doing so, soil ecosystem services can be preserved and critical ecological thresholds avoided. Here, we present an adaptive management framework designed to reduce uncertainty surrounding the soil system, even when soil ecosystem services production is not the explicit management objective, so that managers can reach their management goals without undermining soil multifunctionality or contributing to an irreversible loss of soil ecosystem services.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Suelo , Agricultura , Biodiversidad , Clima , Retroalimentación , Microbiología del Suelo
6.
Ambio ; 43 Suppl 1: 113-25, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25403974

RESUMEN

Freshwater ecosystems are important for global biodiversity and provide essential ecosystem services. There is consensus in the scientific literature that freshwater ecosystems are vulnerable to the impacts of environmental change, which may trigger irreversible regime shifts upon which biodiversity and ecosystem services may be lost. There are profound uncertainties regarding the management and assessment of the vulnerability of freshwater ecosystems to environmental change. Quantitative approaches are needed to reduce this uncertainty. We describe available statistical and modeling approaches along with case studies that demonstrate how resilience theory can be applied to aid decision-making in natural resources management. We highlight especially how long-term monitoring efforts combined with ecological theory can provide a novel nexus between ecological impact assessment and management, and the quantification of systemic vulnerability and thus the resilience of ecosystems to environmental change.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Toma de Decisiones , Monitoreo del Ambiente/métodos , Agua Dulce , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA