Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Asunto principal
Intervalo de año de publicación
1.
Food Res Int ; 165: 112534, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869539

RESUMEN

The high Fischer (F) ratio hemp peptide (HFHP) was prepared by enrichment using activated carbon adsorption, ultrafiltration, and Sephadex G-25 gel filtration chromatography. The OD220/OD280 ratio reached 47.1 with a molecular weight distribution from 180 to 980 Da, a peptide yield up to 21.7 %, and the F value was 31.5. HFHP had high scavenging ability of DPPH, hydroxyl free radicals, and superoxide. Mice experiments showed that the HFHP increased the activity of superoxide dismutase and glutathione peroxidase. The HFHP had no effect on the body weight of mice, but prolonged their weight-bearing swimming time. The lactic acid, serum urea nitrogen, and malondialdehyde of the mice after swimming was reduced, and the liver glycogen increased. The correlation analysis indicated that the HFHP had significant anti-oxidation and anti-fatigue properties.


Asunto(s)
Cannabis , Animales , Ratones , Péptidos , Adsorción , Cromatografía en Gel , Nitrógeno , Semillas
2.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-880720

RESUMEN

The rapidly developing resistance of cancers to chemotherapy agents and the severe cytotoxicity of such agents to normal cells are major stumbling blocks in current cancer treatments. Most current chemotherapy agents have significant cytotoxicity, which leads to devastating adverse effects and results in a substandard quality of life, including increased daily morbidity and premature mortality. The death receptor of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can sidestep p53-dependent pathways to induce tumor cell apoptosis without damaging most normal cells. However, various cancer cells can develop resistance to TRAIL-induced apoptosis via different pathways. Therefore, it is critical to find an efficient TRAIL sensitizer to reverse the resistance of tumor cells to TRAIL, and to reinforce TRAIL's ability to induce tumor cell apoptosis. In recent years, traditional Chinese medicines and their active ingredients have shown great potential to trigger apoptotic cell death in TRAIL-resistant cancer cell lines. This review aims to collate information about Chinese medicines that can effectively reverse the resistance of tumor cells to TRAIL and enhance TRAIL's ability to induce apoptosis. We explore the therapeutic potential of TRAIL and provide new ideas for the development of TRAIL therapy and the generation of new anti-cancer drugs for human cancer treatment. This study involved an extensive review of studies obtained from literature searches of electronic databases such as Google Scholar and PubMed. "TRAIL sensitize" and "Chinese medicine" were the search keywords. We then isolated newly published studies on the mechanisms of TRAIL-induced apoptosis. The name of each plant was validated using certified databases such as The Plant List. This study indicates that TRAIL can be combined with different Chinese medicine components through intrinsic or extrinsic pathways to promote cancer cell apoptosis. It also demonstrates that the active ingredients of traditional Chinese medicines enhance the sensitivity of cancer cells to TRAIL-mediated apoptosis. This provides useful information regarding traditional Chinese medicine treatment, the development of TRAIL-based therapies, and the treatment of cancer.

3.
Chinese Journal of Endemiology ; (12): 426-430, 2018.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-701347

RESUMEN

Osteoarthritis is a kind of joint disease with cartilage injury as the main pathological changes.There is no effective treatment for them.With the discovery,research and application of microRNA (miR),it also provides new hope for the treatment of osteoarthropathy.At present,the role of miR in the pathogenesis of cartilage injury has been fully recognized.In this paper,we reviewed the role of miR-140 in the development of osteoarthritis and its important target genes in recent years.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA