Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 1856, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30755653

RESUMEN

The early treatment and rapid closure of acute or chronic wounds is essential for normal healing and prevention of hypertrophic scarring. The use of split thickness autografts is often limited by the availability of a suitable area of healthy donor skin to harvest. Cellular and non-cellular biological skin-equivalents are commonly used as an alternative treatment option for these patients, however these treatments usually involve multiple surgical procedures and associated with high costs of production and repeated wound treatment. Here we describe a novel design and a proof-of-concept validation of a mobile skin bioprinting system that provides rapid on-site management of extensive wounds. Integrated imaging technology facilitated the precise delivery of either autologous or allogeneic dermal fibroblasts and epidermal keratinocytes directly into an injured area, replicating the layered skin structure. Excisional wounds bioprinted with layered autologous dermal fibroblasts and epidermal keratinocytes in a hydrogel carrier showed rapid wound closure, reduced contraction and accelerated re-epithelialization. These regenerated tissues had a dermal structure and composition similar to healthy skin, with extensive collagen deposition arranged in large, organized fibers, extensive mature vascular formation and proliferating keratinocytes.


Asunto(s)
Bioimpresión/métodos , Piel/citología , Cicatrización de Heridas , Animales , Proliferación Celular , Colágeno/química , Células Epidérmicas/citología , Diseño de Equipo , Femenino , Fibroblastos/citología , Humanos , Hidrogeles/química , Queratinocitos/citología , Ratones , Ratones Desnudos , Prueba de Estudio Conceptual , Repitelización , Piel Artificial , Porcinos , Ingeniería de Tejidos/métodos
2.
Biofabrication ; 5(1): 015001, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23172542

RESUMEN

Bioprinting is an emerging technique used to fabricate viable, 3D tissue constructs through the precise deposition of cells and hydrogels in a layer-by-layer fashion. Despite the ability to mimic the native properties of tissue, printed 3D constructs that are composed of naturally-derived biomaterials still lack structural integrity and adequate mechanical properties for use in vivo, thus limiting their development for use in load-bearing tissue engineering applications, such as cartilage. Fabrication of viable constructs using a novel multi-head deposition system provides the ability to combine synthetic polymers, which have higher mechanical strength than natural materials, with the favorable environment for cell growth provided by traditional naturally-derived hydrogels. However, the complexity and high cost associated with constructing the required robotic system hamper the widespread application of this approach. Moreover, the scaffolds fabricated by these robotic systems often lack flexibility, which further restrict their applications. To address these limitations, advanced fabrication techniques are necessary to generate complex constructs with controlled architectures and adequate mechanical properties. In this study, we describe the construction of a hybrid inkjet printing/electrospinning system that can be used to fabricate viable tissues for cartilage tissue engineering applications. Electrospinning of polycaprolactone fibers was alternated with inkjet printing of rabbit elastic chondrocytes suspended in a fibrin-collagen hydrogel in order to fabricate a five-layer tissue construct of 1 mm thickness. The chondrocytes survived within the printed hybrid construct with more than 80% viability one week after printing. In addition, the cells proliferated and maintained their basic biological properties within the printed layered constructs. Furthermore, the fabricated constructs formed cartilage-like tissues both in vitro and in vivo as evidenced by the deposition of type II collagen and glycosaminoglycans. Moreover, the printed hybrid scaffolds demonstrated enhanced mechanical properties compared to printed alginate or fibrin-collagen gels alone. This study demonstrates the feasibility of constructing a hybrid inkjet printing system using off-the-shelf components to produce cartilage constructs with improved biological and mechanical properties.


Asunto(s)
Materiales Biocompatibles/química , Bioimpresión/métodos , Cartílago/crecimiento & desarrollo , Ingeniería de Tejidos/instrumentación , Andamios del Tejido/química , Animales , Fenómenos Biomecánicos , Cartílago/citología , Proliferación Celular , Condrocitos/citología , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Polímeros/química , Conejos , Ingeniería de Tejidos/métodos
3.
Ann Surg ; 255(5): 867-80, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22330032

RESUMEN

The present review illustrates the state of the art of regenerative medicine (RM) as applied to surgical diseases and demonstrates that this field has the potential to address some of the unmet needs in surgery. RM is a multidisciplinary field whose purpose is to regenerate in vivo or ex vivo human cells, tissues, or organs to restore or establish normal function through exploitation of the potential to regenerate, which is intrinsic to human cells, tissues, and organs. RM uses cells and/or specially designed biomaterials to reach its goals and RM-based therapies are already in use in several clinical trials in most fields of surgery. The main challenges for investigators are threefold: Creation of an appropriate microenvironment ex vivo that is able to sustain cell physiology and function in order to generate the desired cells or body parts; identification and appropriate manipulation of cells that have the potential to generate parenchymal, stromal and vascular components on demand, both in vivo and ex vivo; and production of smart materials that are able to drive cell fate.


Asunto(s)
Cirugía General/tendencias , Medicina Regenerativa , Animales , Materiales Biocompatibles/uso terapéutico , Prótesis Vascular , Trasplante de Células , Sulfatos de Condroitina/uso terapéutico , Colágeno/uso terapéutico , Procedimientos Quirúrgicos Dermatologicos , Tracto Gastrointestinal/cirugía , Insuficiencia Cardíaca/terapia , Humanos , Fallo Renal Crónico/cirugía , Laringe/cirugía , Trasplante de Hígado , Enfermedades Respiratorias/cirugía , Piel Artificial , Andamios del Tejido , Cicatrización de Heridas/fisiología , Heridas y Lesiones/cirugía
4.
Microcirculation ; 14(3): 181-92, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17454671

RESUMEN

OBJECTIVES: Exercise training is known to enhance skeletal muscle blood flow capacity, with high-intensity interval sprint training (IST) primarily affecting muscles with a high proportion of fast twitch glycolytic fibers. The objective of this study was to determine the relative contributions of new arteriole formation and lumenal arteriolar remodeling to enhanced flow capacity and the impact of these adaptations on local microvascular hemodynamics deep within the muscle. METHODS: The authors studied arteriolar adaptation in the white/mixed-fiber portion of gastrocnemius muscles of IST (6 bouts of running/day; 2.5 min/bout; 60 m/min speed; 15% grade; 4.5 min rest between bouts; 5 training days/wk; 10 wks total) and sedentary (SED) control rats using whole-muscle Microfil casts. Dimensional and topological data were then used to construct a series of computational hemodynamic network models that incorporated physiological red blood cell distributions and hematocrit and diameter dependent apparent viscosities. RESULTS: In comparison to SED controls, IST elicited a significant increase in arterioles/order in the 3A through 6A generations. Predicted IST and SED flows through the 2A generation agreed closely with in vivo measurements made in a previous study, illustrating the accuracy of the model. IST shifted the bulk of the pressure drop across the network from the 3As to the 4As and 5As, and flow capacity increased from 0.7 mL/min in SED to 1.5 mL/min in IST when a driving pressure of 80 mmHg was applied. CONCLUSIONS: The primary adaptation to IST is an increase in arterioles in the 3A through 6A generations, which, in turn, creates an approximate doubling of flow capacity and a deeper penetration of high pressure into the arteriolar network.


Asunto(s)
Modelos Cardiovasculares , Fibras Musculares de Contracción Rápida/fisiología , Músculo Esquelético/irrigación sanguínea , Redes Neurales de la Computación , Condicionamiento Físico Animal/fisiología , Animales , Masculino , Microcirculación/fisiología , Músculo Esquelético/fisiología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA