Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(21): 60212-60224, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37017837

RESUMEN

In this work, an iron-rich residue, which is widely obtained as a by-product in the iron mining industry, and macauba endocarp, waste from the extraction of vegetable oil for the production of biofuels, were used in the preparation of different composites based on iron and carbon. The composites were obtained by manual grinding of the calcined iron residue and activated carbon prepared by the macauba endocarp followed by thermal treatment under nitrogen atmosphere. The effect of the thermal treatment was analyzed by Mössbauer spectroscopy and X-ray diffraction and showed that the increase in the treatment temperature promoted the formation of different reduced iron phases in the final composite, such as Fe3O4, FeO, and Fe0. These composites were used in a combined adsorption/oxidation process through photocatalysis to remove up to 93% of amoxicillin from aqueous phase. The formation of possible reaction intermediates was monitored by electrospray ionization mass spectrometry (ESI-MS) and a mechanism of amoxicillin degradation was proposed. Afterward, the Fe/C composites were conducted to evaluate the impact of several parameters on phosphate adsorption processes and showed a maximum adsorption capacity of 40.3 mg g-1. The adsorption capacity obtained for all the materials were greater than those found in the literature.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Hierro/química , Carbón Orgánico/química , Fosfatos , Oxidación-Reducción , Adsorción , Contaminantes Químicos del Agua/química
2.
Rapid Commun Mass Spectrom ; 36(24): e9407, 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36169595

RESUMEN

RATIONALE: Paper spray (PS) is a simple and innovative ambient ionization technique for mass spectrometry (MS) analysis. Under PS-MS conditions, chemical reactions, which usually occur slowly on a bulk scale, are accelerated. Moreover, the formation of products and transient species can be easily monitored. In this manuscript, reactions between phthalic anhydride and diamines were conducted and monitored using a PS-MS platform. The reaction products (phthalimides) have many pharmaceutical applications, but their traditional syntheses can take hours under reflux, requiring laborious purification steps. METHODS: In situ reactions were performed by dropping methanolic solutions of phthalic anhydride and diamines on a triangular paper. The analyses were achieved by positioning the triangle tip in front of the mass spectrometer entrance, whereas a metal clip was attached to the triangle base. After adding methanol to the paper, a high voltage was applied across the metal clip, and the mass spectra were acquired. RESULTS: The intrinsic reactivity of alkyl and aromatic diamines was evaluated. The carbon chain remarkably influenced the reactivity of aliphatic diamines. For aryl diamines, the ortho isomer was the most reactive. Moreover, for aryl amines with electron-withdrawing substituents, no reaction was noticed. CONCLUSIONS: Taking advantage of the unique characteristics of PS-MS, it was possible to investigate the intrinsic reactivity of model alkyl (ethylene versus propylene) and aryl (o-phenylene versus m-phenylene and p-phenylene) diamines towards phthalic anhydride. Some crucial parameters that affect the intrinsic reactivity of organic molecules, such as isomerism, intramolecular interaction, and conformation, were easily explored.


Asunto(s)
Diaminas , Anhídridos Ftálicos , Anhídridos Ftálicos/química , Diaminas/química , Espectrometría de Masas/métodos , Ftalimidas/química
3.
J Hazard Mater ; 401: 123713, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33113722

RESUMEN

Herein, the structural defects of metal-free polymeric carbon nitrides were controlled by making use of different precursors in their syntheses, i.e. melamine (CN-M) and thiourea (CN-T), as well as a 1:1 mixture of them (CN-1M:1 T). By controlling the structural defects, the electronic, morphological and chemical properties were modified. Additionally, the activities of synthesized PCNs were evaluated for amoxicillin photodegradation under visible light irradiation (16 mW cm-2). The results of photocatalytic tests showed that CN-T material has better efficiency (100 % removal within 48 h), which is directly related to the greater number of defects present in its structure with consequent improvement of electron-hole pairs separation efficiency. The CN-T material showed excellent stability with only 13 % decrease in its photocatalytic activity after the third cycle. A mechanism for amoxicillin degradation by CN-T was proposed based on the ESI-MS and the in situ EPR allied with spin trapping method investigations.


Asunto(s)
Amoxicilina , Grafito , Catálisis , Luz , Nitrilos , Fotólisis
4.
J Hazard Mater ; 400: 123310, 2020 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-32947712

RESUMEN

In this work, the potential to use an iron mining waste (IW), rich in α-Fe2O3 and α-FeOOH, for the development of composites based on graphitic carbon nitride (CN) is demonstrated. These materials were synthesized through a simple thermal treatment at 550 °C of a mixture containing melamine and different IW mass percentages, giving rise to the catalysts xIWCN (where x is related to the initial mass percentage of IW). The iron phases of the precursor were partially transformed throughout the formation of the composites, in such a way that a mixture of α-Fe2O3 and γ-Fe2O3 was observed in their final composition. Furthermore, structural defects were produced in the carbonaceous matrix of the materials, causing the fragmentation of g-C3N4 and an increase of surface area. The catalytic activities of these composites were evaluated in reactions of peroxymonosulfate activation for the degradation of paracetamol. Among these materials, the composite 20IWCN showed the best catalytic activity, being able to degrade almost 90 % of the total paracetamol in only 20 min of reaction. This catalyst also demonstrated high chemical stability, being successfully utilized in five consecutive reaction cycles, with negligible iron leaching.


Asunto(s)
Acetaminofén , Hierro , Grafito , Minería , Compuestos de Nitrógeno , Peróxidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA