Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35955344

RESUMEN

This paper presents research on the microstructure and mechanical properties of an alloyed composite copper (Cu) surface layer, reinforced with a mixture of chromium-tungsten carbide (Cr-WC) powders. Copper alloying was performed using a high-power diode laser (HPDL). In the tests, three mixtures of powders with different percentage contents (75%Cr 25%WC, 50%Cr 50%WC, 25%Cr 75%WC) were injected into the melting pool during the laser surface alloying process. Microstructural evolution and the properties of the surface layer of copper after laser alloying were investigated. Structural investigations were performed using light microscopy, scanning and transmission electron microscopy (SEM, TEM) and X-ray diffraction (XRD). Microhardness and wear resistance of the modified surface layer were examined as well. After laser treatment the applied powders appear as uniformly distributed particles in the alloyed zone as well as nanoscale precipitates in the Cu matrix. Several types of precipitate characteristics, in terms of morphology, structure and chemical composition, were observed. Laser alloying of the surface layer modified the microstructure, which resulted in an increase in the hardness of the surface layers compared to the base material.

2.
Materials (Basel) ; 15(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35683142

RESUMEN

The aim of this work was to develop a new coating material based on Ni20Cr alloy modified with up to 50%wt. rhenium. The modification was carried out by the mechanical mixing of the base powder and ammonium perrhenate with the subsequent thermoreduction in an H2 atmosphere. The obtained powder consists of a nickel-chromium core surrounded by a rhenium shell. The characterization of the powders-including their microstructure, phase and chemical composition, density, flowability, particle size distribution, and specific surface area-was performed. The influence of plasma current intensity and hydrogen gas flow on in-flight particle temperature and velocity were investigated. The results indicate that there is interdiffusion between the base Ni20Cr and the rhenium shell, resulting in intermediary solid solution(s). The modified powders have a higher specific surface area and a lower flowability, but this does not prevent them from being used as feedstock in plasma spraying. In-flight measurements reveal that increasing the content of rhenium allows for the higher temperature of particles, though it also reduces their speed.

3.
Materials (Basel) ; 14(14)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34300707

RESUMEN

The first steel with improved resistance towards atmospheric corrosion, the so-called weathering steel, was patented in the USA in 1933 and was initially used for coal railway cars, and after that, in building and bridge engineering. Weathering steels show higher corrosion resistance than carbon steels in many types of atmosphere due to their ability to form a compact, stable, adherent and protective patina during the time of exposure. Morphological evaluation of the appearance of the corrosion product layer, together with phase analysis of its components, can enable determination of the type of patina and the degree of protection of the steel. To support the visual assessment of a patina, a check based on the qualitative and quantitative phase analysis of its components may be carried out, and the PAI (Protective Ability Index) can be calculated. The estimation of the corrosion processes on original Polish-made weathering steel (12HNNbA) was carried out on a 30-year-old bridge in Poland. There are some structural problems within the deck derived not only from corrosion but also steel cracking, both inside and outside the boxes, at different heights. Fourteen representative samples of patina were analysed and their phase structures were determined by the X-ray powder diffraction method. The PAIs were determined and analysed.

4.
Materials (Basel) ; 14(14)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34300716

RESUMEN

In this work, selected properties of metallic and oxide thin films based on titanium and cobalt were described. Thin-film coatings were prepared using the magnetron sputtering method. The deposition was carried out from sintered targets with different Co-content (2 at.%, 12 at.% and 50 at.%). The relation between the Ti-Co target composition and the Co-content in the metallic and oxide films was examined. There was 15-20% more cobalt in the films than in the target. Moreover, the deposition rate under neutral conditions (in Ar plasma) was even 10-times higher compared to oxidizing Ar:O2 (70:30) plasma. A comprehensive analysis of the structural properties (performed with GIXRD and SEM) revealed the amorphous nature of (Ti,Co)Ox coatings, regardless of the cobalt content in the coating. The fine-grained, homogenous microstructure was observed, where cracks and voids were identified only for films with high Co-content. Optical studies have shown that these films were well transparent (60% ÷ 80%), and the amount of cobalt in the target from which they were sputtered had a significant impact on the decrease in the transparency level, the slight shift of the absorption edge position (from 279 nm to 289 nm) as well as the decrease in their optical band gap energy (from 3.13 eV to 1.71 eV). Electrical studies have shown that in (Ti,Co)Ox thin films, a unipolar memristive-like effect can be observed. The occurrence of such effects has not been reported so far in the case of TiO2 coatings with the addition of Co.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA