RESUMEN
Radioembolization (RE) is a medical treatment for primary and secondary liver cancer that involves the transcatheter intraarterial delivery of micron-sized and radiation-emitting microspheres, with the goal of improving microsphere deposition in the tumoral bed while sparing healthy tissue. An increasing number of in vitro and in silico studies on RE in the literature suggest that the particle injection velocity, spatial location of the catheter tip and catheter type are important parameters in particle distribution. The present in silico study assesses the performance of a novel catheter design that promotes particle dispersion near the injection point, with the goal of generating a particle distribution that mimics the flow split to facilitate tumour targeting. The design is based on two factors: the direction and the velocity at which particles are released from the catheter. A series of simulations was performed with the catheter inserted at an idealised hepatic artery tree with physiologically realistic boundary conditions. Two longitudinal microcatheter positions in the first generation of the tree were studied by analysing the performance of the catheter in terms of the outlet-to-outlet particle distribution and split flow matching. The results show that the catheter with the best performance is one with side holes on the catheter wall and a closed frontal tip. This catheter promotes a flow-split-matching particle distribution, which improves as the injection crossflow increases.
Asunto(s)
Hemodinámica , Neoplasias Hepáticas , Catéteres , Hemodinámica/fisiología , Arteria Hepática/fisiología , Humanos , Neoplasias Hepáticas/irrigación sanguínea , Neoplasias Hepáticas/radioterapiaRESUMEN
In the last decades, the numerical studies on hemodynamics have become a valuable explorative scientific tool. The very first studies were done over idealized geometries, but as numerical methods and the power of computers have become more affordable, the studies tend to be patient specific. We apply the study to the numerical analysis of tumor-targeting during liver radioembolization (RE). RE is a treatment for liver cancer, and is performed by injecting radiolabeled microspheres via a catheter placed in the hepatic artery. The objective of the procedure is to maximize the release of radiolabeled microspheres into the tumor and avoid a healthy tissue damage. Idealized virtual arteries can serve as a generalist approach that permits to separately analyze the effect of a variable in the microsphere distribution with respect to others. However, it is important to use proper physiological boundary conditions (BCs). It is not obvious, the need to account for the effect of tortuosity when using an idealized virtual artery. We study the use of idealized geometry of a hepatic artery as a valid research tool, exploring the importance of using realistic spiral-flow inflow BC. By using a literature-based cancer scenario, we vary two parameters to analyze the microsphere distribution through the outlets of the geometry. The parameters varied are the type of microspheres injected and the microsphere injection velocity. The results with realistic inlet velocity profile showed that the particle distribution in the liver segments is not affected by the analyzed injection velocity values neither by the particle density. NOVELTY STATEMENT: In this article, we assessed the use of idealized geometries as a valid research tool and applied the use of an idealized geometry to the case of an idealized hepatic artery to study the particle-hemodynamics during radioembolization (RE). We studied three different inflow boundary conditions (BCs) to assess the usefulness of the geometry, two types of particle injection velocities and two types of commercially available microspheres for RE treatment. In recent years, the advent in computational resources allowed for more detailed patient-specific geometry generation and discretization and hemodynamics simulations. However, general studies based on idealized geometries can be performed in order to provide medical doctors with some basic and general guidelines when using a given catheter for a given cancer scenario. Moreover, using an idealized geometry can be a reasonable approach which allows us to isolate a given parameter and control other parameters, so that parameters can be independently assessed. Even though an idealized geometry does not match any patient's geometry, the use of an idealized geometry can be valid when drawing general conclusions that may be useful in patient-specific cases. However, we believe that even if an idealized hepatic artery geometry is used for the study, it is necessary to account for the upstream and downstream tortuosity of vessels through the BCs. In this work, we highlighted the need of modeling the tortuosity of upstream and downstream vasculatures through the BCs.
Asunto(s)
Arteria Hepática/fisiología , Microesferas , Hemodinámica/fisiología , Humanos , Hígado/metabolismo , Hígado/fisiologíaRESUMEN
In recent years, in all Western societies has changed the paradigm of the physician-patient relationship. It has passed from the principle of beneficence and abscence of malificence to the patients autonomy, recognizing their sovereignty in making clinical decisions that directly affect them. Occasionally, this principle can clash with certain bioethical aspects of conscientious objection for health professionals and providers, primarily in the areas of contraception and abortion. We discussed aspects that support one or another attitude emphasizing issues relating to contraception and induced abortion and the access and use of contraceptive methods by adolescents recognized as "mature minors" to issues of sexuality, particularly in Spain and Mexico.