Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Commun Eng ; 3(1): 110, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164470

RESUMEN

The value of luxury goods, particularly investment-grade gemstones, is influenced by their origin and authenticity, often resulting in differences worth millions of dollars. Traditional methods for determining gemstone origin and detecting treatments involve subjective visual inspections and a range of advanced analytical techniques. However, these approaches can be time-consuming, prone to inconsistencies, and lack automation. Here, we propose GEMTELLIGENCE, a novel deep learning approach enabling streamlined and consistent origin determination of gemstone origin and detection of treatments. GEMTELLIGENCE leverages convolutional and attention-based neural networks that combine the multi-modal heterogeneous data collected from multiple instruments. The algorithm attains predictive performance comparable to expensive laser-ablation inductively-coupled-plasma mass-spectrometry analysis and expert visual examination, while using input data from relatively inexpensive analytical methods. Our methodology represents an advancement in gemstone analysis, greatly enhancing automation and robustness throughout the analytical process pipeline.

2.
Front Artif Intell ; 3: 578613, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33733218

RESUMEN

Prognostic and Health Management (PHM) systems are some of the main protagonists of the Industry 4.0 revolution. Efficiently detecting whether an industrial component has deviated from its normal operating condition or predicting when a fault will occur are the main challenges these systems aim at addressing. Efficient PHM methods promise to decrease the probability of extreme failure events, thus improving the safety level of industrial machines. Furthermore, they could potentially drastically reduce the often conspicuous costs associated with scheduled maintenance operations. The increasing availability of data and the stunning progress of Machine Learning (ML) and Deep Learning (DL) techniques over the last decade represent two strong motivating factors for the development of data-driven PHM systems. On the other hand, the black-box nature of DL models significantly hinders their level of interpretability, de facto limiting their application to real-world scenarios. In this work, we explore the intersection of Artificial Intelligence (AI) methods and PHM applications. We present a thorough review of existing works both in the contexts of fault diagnosis and fault prognosis, highlighting the benefits and the drawbacks introduced by the adoption of AI techniques. Our goal is to highlight potentially fruitful research directions along with characterizing the main challenges that need to be addressed in order to realize the promises of AI-based PHM systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA