Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 39(30): 5620-31, 2000 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-18354559

RESUMEN

We present the results of an experiment designed to measure the changes in the radiometric calibration of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) from the time of its manufacture to the time of the start of on-orbit operations. The experiment uses measurements of the Sun at the manufacturer's facility to predict the instrument outputs during solar measurements immediately after launch. Because an onboard diffuser plate is required for these measurements, the experiment measures changes in the instrument-diffuser system. There is no mechanism in this experiment to separate changes in the diffuser from changes in the instrument. For the eight SeaWiFS bands, the initial instrument outputs on orbit averaged 0.8% higher than predicted with a standard deviation of 0.9%. The greatest difference was 2.1% (actual output higher than predicted) for band 3. The estimated uncertainty for the experiment is 3%. Thus the transfer-to-orbit experiment shows no changes in the radiometric sensitivities of the SeaWiFS bands--at the 3% level--from the completion of the instrument's manufacture to its insertion into orbit.

2.
Appl Opt ; 37(18): 3923-41, 1998 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-18273360

RESUMEN

Over a period of 3 years a precision Sun photometer (SPM) operating between 300 and 1025 nm was calibrated four times at three different high-mountain sites in Switzerland, Germany, and the United States by means of the Langley-plot technique. We found that for atmospheric window wavelengths the total error (2varsigma-statistical plus systematic errors) of the calibration constants V(0) (lambda), the SPM voltage in the absence of any attenuating atmosphere, can be kept below 1.6% in the UV-A and blue, 0.9% in the mid-visible, and 0.6% in the near-infrared spectral region. For SPM channels within strong water-vapor or ozone absorption bands a modified Langley-plot technique was used to determine V(0) (lambda) with a lower accuracy. Within the same period of time, we calibrated the SPM five times using irradiance standard lamps in the optical labs of the Physikalisch-Meteorologisches Observatorium Davos and World Radiation Center, Switzerland, and of the Remote Sensing Group of the Optical Sciences Center, University of Arizona, Tucson, Arizona. The lab calibration method requires knowledge of the extraterrestrial spectral irradiance. When we refer the standard lamp results to the World Radiation Center extraterrestrial solar irradiance spectrum, they agree with the Langley results within 2% at 6 of 13 SPM wavelengths. The largest disagreement (4.4%) is found for the channel centered at 610 nm. The results of these intercomparisons change significantly when the lamp results are referred to two different extraterrestrial solar irradiance spectra that have become recently available.

3.
J Res Natl Inst Stand Technol ; 102(6): 627-646, 1997.
Artículo en Inglés | MEDLINE | ID: mdl-27805113

RESUMEN

As a part of the pre-flight calibration and validation activities for the Ocean Color and Temperature Scanner (OCTS) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color satellite instruments, a radiometric measurement comparison was held in February 1995 at the NEC Corporation in Yokohama, Japan. Researchers from the National Institute of Standards and Technology (NIST), the National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC), the University of Arizona Optical Sciences Center (UA), and the National Research Laboratory of Metrology (NRLM) in Tsukuba, Japan used their portable radiometers to measure the spectral radiance of the OCTS visible and near-infrared integrating sphere at four radiance levels. These four levels corresponded to the configuration of the OCTS integrating sphere when the calibration coefficients for five of the eight spectral channels, or bands, of the OCTS instrument were determined. The measurements of the four radiometers differed by -2.7 % to 3.9 % when compared to the NEC calibration of the sphere and the overall agreement was within the combined measurement uncertainties. A comparison of the measurements from the participating radiometers also resulted in agreement within the combined measurement uncertainties. These results are encouraging and demonstrate the utility of comparisons using laboratory calibration integrating sphere sources. Other comparisons will focus on instruments that are scheduled for spacecraft in the NASA study of climate change, the Earth Observing System (EOS).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA