Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 12565, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822000

RESUMEN

Using the established synthetic methods, aroyl-S,N-ketene acetals and subsequent bi- and multichromophores can be readily synthesized. Aside from pronounced AIE (aggregation induced emission) properties, these selected examples possess distinct complexometric behavior for various metals purely based on the underlying structural motifs. This affects the fluorescence properties of the materials which can be readily exploited for metal ion detection and for the formation of different metal-aroyl-S,N-ketene acetal complexes that were confirmed by Job plot analysis. In particular, gold(I), iron(III), and ruthenium (III) ions reveal complexation enhanced or quenched emission. For most dyes, weakly coodinating complexes were observed, only in case of a phenanthroline aroyl-S,N-ketene acetal multichromophore, measurements indicate the formation of a strongly coordinating complex. For this multichromophore, the complexation results in a loss of fluorescence intensity whereas for dimethylamino-aroyl-S,N-ketene acetals and bipyridine bichromophores, the observed quantum yield is nearly tripled upon complexation. Even if no stable complexes are formed, changes in absorption and emission properties allow for a simple ion detection.

2.
Sci Rep ; 13(1): 14399, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37658089

RESUMEN

Alkynylated aroyl-S,N-ketene acetals are readily synthesized in mostly excellent yields by a Sonogashira reaction resulting in a substance library of more than 20 examples. Upon expansion of the reaction sequence by deprotection and concatenating of the copper-click reaction in a one-pot fashion, a library of 11 triazole-ligated aroyl-S,N-ketene acetals is readily accessible. All derivatives show pronounced solid-state emission and aggregation-induced emission properties depending on the nature of the alkynyl or the triazole substituents.

3.
Chemistry ; 29(64): e202302067, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37638792

RESUMEN

Aroyl-S,N-ketene acetals represent a peculiar class of heterocyclic merocyanines, compounds bearing pronounced and rather short dipoles with great push-pull characteristics that define their rich properties. They are accessible via a wide array of synthetic concepts and procedures, ranging from addition-elimination and condensation procedures up to rearrangement and metal-mediated reactions. With our work from 2020, aroyl-S,N-ketene acetals have been identified as powerful and promising dyes with pronounced and vastly tunable solid-state emission and aggregation-induced emission properties. One characteristic trademark of this class of dye molecules is the level of control that could be exerted, and which was thoroughly explored. Based on these results, the field was opened to extend the system to bi- and multichromophoric systems by the full toolkit of synthetic organic chemistry thus giving access to even more exciting properties and manifolded substance libraries capitalizing on the AIE properties. This review aims at outlining the reaction-based principles that allow for a swift and facile access to aroyl-S,N-ketene acetals, their methodical and structural evolution and the plethora of fluorescence and aggregation properties.

4.
Chemistry ; 29(59): e202301908, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37475616

RESUMEN

Symmetric and unsymmetric diaroyl-S,N-ketene acetals can be readily accessed in consecutive syntheses in good to excellent yields by exploiting the inherent nucleophilic character of the methine position. Different aroyl-S,N-ketene acetals as well as acid chlorides yield a library of 19 diaroyl compounds with substitution and linker pattern-tunable emission properties, leading to a significant red-shift of emission in the solid and aggregated state, which was thoroughly investigated. Additionally, the stability of the luminescent aggregates is highly increased. In a follow-up one-pot procedure, pyrazolo-S,N-ketene acetals can easily be accessed employing a nucleophilic cyclocondensation.

5.
RSC Adv ; 13(25): 16867-16871, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37283871

RESUMEN

Etherified aroyl-S,N-ketene acetals are readily synthesized by a novel one-pot addition-elimination-Williamson-etherification sequence. Although the underlying chromophore remains constant, derivatives show pronounced color-tuning of solid-state emission and AIE characteristics, whereas a hydroxy-methyl derivative represents an easily accessible mono molecular aggregation-induced white-light emitter.

6.
Chemistry ; 28(61): e202202579, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36111794

RESUMEN

Aroyl-S,N-ketene acetals are a novel highly diverse class of aggregation-induced emission fluorogens (AIEgens) with a plethora of interesting properties. An expanded compound library of more than 110 dyes set the stage for the first qualitative control and tuneability of all aspects of their photophysical properties. The interplay of substituents not only allows tuning and prediction of the emission color, but also of the intensity, and quantum yields both in solids and in the aggregated state; these can be rationalized by scrutinizing intermolecular interactions in the crystalline solid state.


Asunto(s)
Acetales , Etilenos , Acetales/química , Etilenos/química , Cetonas/química
7.
Chem Sci ; 13(18): 5374-5381, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35655556

RESUMEN

Asymmetrically bridged aroyl-S,N-ketene acetals and aroyl-S,N-ketene acetal multichromophores can be readily synthesized in consecutive three-, four-, or five-component syntheses in good to excellent yields by several successive Suzuki-couplings of aroyl-S,N-ketene acetals and bis(boronic)acid esters. Different aroyl-S,N-ketene acetals as well as linker molecules yield a library of 23 multichromophores with substitution and linker pattern-tunable emission properties. This allows control of different communication pathways between the chromophores and of aggregation-induced emission (AIE) and energy transfer (ET) properties, providing elaborate aggregation-based fluorescence switches.

8.
Chemistry ; 27(53): 13426-13434, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34170045

RESUMEN

Aroyl-S,N-ketene acetal-based bichromophores can be readily synthesized in a consecutive three-component synthesis in good to excellent yields by condensation of aroyl chlorides and an N-(p-bromobenzyl) 2-methyl benzothiazolium salt followed by a Suzuki coupling, yielding a library of 31 bichromophoric fluorophores with substitution pattern-tunable emission properties. Varying both chromophores enables different communication pathways between the chromophores, exploiting aggregation-induced emission (AIE) and energy transfer (ET) properties, and thus, furnishing aggregation-based fluorescence switches. Possible applications range from fluorometric analysis of alcoholic beverages to pH sensors.


Asunto(s)
Acetales , Cetonas , Benzopiranos , Comunicación , Etilenos , Indoles
9.
Chem Commun (Camb) ; 56(54): 7407-7410, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32530008

RESUMEN

Merocyanine-triarylamine bichromophores are readily synthesized by sequentially Pd-catalyzed insertion-alkynylation-Michael-Suzuki four-component reactions. White-light emissive systems form upon aggregation in 1 : 99 and 0.1 : 99.9 vol% CH2Cl2-cyclohexane mixtures, ascribed to aggregation-induced dual emission (AIDE) in combination with partial energy transfer between both chromophore units as supported by spectroscopic studies.

10.
Angew Chem Int Ed Engl ; 59(25): 10037-10041, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-31990116

RESUMEN

N-Benzyl aroyl-S,N-ketene acetals can be readily synthesized by condensation of aroyl chlorides and N-benzyl 2-methyl benzothiazolium salts in good to excellent yields, yielding a library of 35 chromophores with bright solid-state emission and aggregation-induced emission characteristics. Varying the substituent from electron-donating to electron-withdrawing enables the tuning of the solid-state emission color from deep blue to red.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA