Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(18): eabm4106, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35507652

RESUMEN

A physical unclonable function (PUF) is a physical entity that provides a measurable output that can be used as a unique and irreproducible identifier for the artifact wherein it is embedded. Popularized by the electronics industry, silicon PUFs leverage the inherent physical variations of semiconductor manufacturing to establish intrinsic security primitives for attesting integrated circuits. Owing to the stochastic nature of these variations, photolithographically manufactured silicon PUFs are impossible to reproduce (thus unclonable). Inspired by the success of silicon PUFs, we sought to create the first generation of genetic PUFs in human cells. We demonstrate that these PUFs are robust (i.e., they repeatedly produce the same output), unique (i.e., they do not coincide with any other identically produced PUF), and unclonable (i.e., they are virtually impossible to replicate). Furthermore, we demonstrate that CRISPR-engineered PUFs (CRISPR-PUFs) can serve as a foundational principle for establishing provenance attestation protocols.

2.
Proc Wirel Health ; 20132013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28224139

RESUMEN

Gait and postural control are important aspects of human movement and balance. Normal movement control in human is subject to change with aging. With aging, the nervous system comprising, somatosensory, visual senses, spatial orientation senses, and neuromuscular control degrade. As a result, the body movement control such as the lateral sway while walking is affected which has been shown to be a significant cause of falling among the elderly. Biofeedback has been investigated to assist elderly improve their body movement and postural ability, by supplementing the feedback to the nervous system. In this paper, we propose a wearable low-power sensor system capable of characterizing lateral sway and gait parameters. Then, it can provide corrective feedback to reduce excessive sway in real-time via vibratory feedback modules. Real-time and low-power characteristics along with wearability of our proposed system allow long-term continuous subjects' sway monitoring while giving direct feedback to enhance walking sway and prevent falling. It can also be used in the clinics as a tool for evaluating the risks of falls, and training users to better maintain their balance. The effectiveness of the biofeedback system was evaluated on 12 older adults as they performed gait and stance tasks with and without biofeedback. Significant improvement (p-value < 0.1) in sway angle in variance of the sway angle, variance of gait phases, and in postural control while on perturbed surface was detected when the proposed Sway Error Feedback System was used.

3.
Proc Wirel Health ; 20112011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28224138

RESUMEN

Hidden Markov Model (HMM) is a well established technique for detecting patterns in a stream of observations. It performs well when the observation sequence does not contain unseen patterns that were not part of the training set. In an unconstrained environment, the observation sequence might contain new patterns that the HMM model is not familiar with. In such cases, HMM will match the test pattern to some trained pattern, which is most similar to the test pattern. This increases the false positives in the system. In this paper, we are describing a threshold based technique to detect such irrelevant patterns in a continuous stream of observations, and classify them as unwanted or bad patterns. The novelty of our approach is that it allows early detection of unwanted patterns. Test patterns are validated on a fixed length substring of observation sequence, rather than on the whole observation sequence corresponding to the test pattern. The substrings are validated based on its similarity with a valid pattern using a threshold value. This reduces the latency of detection of unwanted movement, and makes the detection process independent of duration of the various pattern classes. We evaluated this technique in the context of body sensor networks based human action recognition, and have achieved about 93 percent accuracy in detecting unwanted actions, while maintaining a 94 percent accuracy of recognizing valid actions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA