Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Oncol Lett ; 8(6): 2591-2596, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25364433

RESUMEN

S-allylmercaptocysteine (SAMC) is an active compound that is derived from garlic and has been demonstrated to possess antitumor properties in vitro. The present study aimed to investigate the effect of SAMC and determine the underlying mechanism of this effect on human colorectal carcinoma cells. The SW620 cells were cultured with various concentrations of SAMC and cell viability was detected using an MTT assay. Analysis of apoptosis was performed using terminal deoxynucleotidyl-transferase-mediated deoxyuridine triphosphate nick end labeling. The c-Jun N-terminal kinase (JNK) and p38 mitogen activated protein kinase (p38) signaling pathways were investigated by polymerase chain reaction. SAMC was observed to reduce cell viability in a dose- and time-dependent manner, partially through the induction of apoptosis in human colorectal carcinoma cells. At the molecular level, SAMC induces apoptosis through JNK and p38 signaling pathways, increasing tumor protein p53 (p53) and Bax activation in the SW620 cells. The most effective concentration of SAMC for the induction of SW620 cell apoptosis was found to be 400 µM, which was confirmed through cell viability assays and apoptosis analysis. The current study indicated that SAMC inhibits cell proliferation and induces apoptosis of SW620 cells via the JNK and p38 pathways. The results from the current study demonstrated that SAMC must be further investigated as a novel preventive or therapeutic agent for the treatment of colorectal carcinoma, and potentially for use in other tumor types.

2.
Asian Pac J Cancer Prev ; 14(6): 3631-4, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23886157

RESUMEN

MicroRNAs (MiRNAs) play important roles in coordinating a variety of cellular processes and abnormal expression has been linked to the occurrence of several cancers. The miRNA miR-451 is downregulated in colorectal carcinoma (CRC) cells, suggested by several research groups including our own. In this study, synthetic miR-451 mimics were transfected into the SW620 human CRC cell line using Lipofectamine 2000 and expression of miR-451 was analyzed by real time PCR, while expression of CAB39, LKB1, AMPK, AKT, PI3K and Bcl2 was analyzed by Western blot, and cell growth was detected by MTT assay. In comparison to the controls, a significant increase in the expression of miR-451 was associated with significantly decreased expression of CAB39, LKB1, AMPK, AKT, PI3K and Bcl2. The capacity of cell proliferation was significantly decreased by miR-451 expression, which also inhibited cell growth. Our study confirmed that miR-451 has a repressive role in CRC cells by inhibiting cell growth through down-regulating the P13K/AKT pathway.


Asunto(s)
Proliferación Celular , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Quinasas de la Proteína-Quinasa Activada por el AMP , Apoptosis , Western Blotting , Proteínas de Unión al Calcio/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA