Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Phytoremediation ; : 1-14, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967318

RESUMEN

Removing toxic Pb(II) ions from aqueous solution by the peels of citrus reticulate (mandarin orange), a fruit industry waste, presents suitable scale-up possibilities. The Scanning Electron Microscope (SEM) and Brunauer-Emmett-Teller (BET) studies reflected that the mandarin orange peel powder had a porous surface area (32.46 m2g-1), average pore size and pore volume was 38.6 Å and 0.402 cm3g-1, respectively, favorable for binding Pb(II) ions. Fourier-transform infrared spectroscopy (FTIR) showed C-Br stretching, primary alcohol (C-O), phenolic O-H, and carbodimide N = C = N bands primarily helped to bind Pb(II) ions. The study evaluated and optimized the parametric influences of pH, adsorbate and biosorbent concentration, contact time and temperature on the removal efficiency of Pb(II) ions. A maximum of 97.08% Pb(II) was removed from 20 mg L-1 solution when 2.5 g L-1 adsorbent was present. The reaction obeyed the pseudo-second-order kinetic model. The intra-particle diffusion was involved in lead sorption. The Langmuir isotherm model resulted in an adsorption capacity of 23.04 mg g-1. 35.28% Pb(II) was removed in the 3rd adsorption-desorption cycle with 0.4 M HCl. The adsorption process was natural, impulsive and endothermic. The statistical investigation used Multiple Polynomial Regression (MPR) and Genetic Algorithm (GA). The analysis effectively forecasted the percentage removal at the optimized condition.


The results of toxic Pb(II) ion removal from aqueous solution by the peels of citrus reticulate (mandarin orange), a food industry waste, are reported. The maximum Pb(II) adsorption capacity of 23.04 mg/g. This work provides a new way to realize good adsorption capacity of Pb(II) by orange peel and accelerates to utilize for small and medium-sized industries in rural areas of 3rd World Countries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA