Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39071418

RESUMEN

The calvarial bones of the infant skull are connected by transient fibrous joints known as sutures and fontanelles, which are essential for reshaping during birth and postnatal growth. Genetic disorders such as Apert, Pfeiffer, Crouzon, and Bent bone dysplasia linked to FGFR2 variants often exhibit multi-suture craniosynostosis and a persistently open anterior fontanelle (AF). This study leverages mouse genetics and single-cell transcriptomics to determine how Fgfr2 regulates closure of the AF closure and its transformation into the frontal suture during postnatal development. We find that cells of the AF, marked by the tendon/ligament factor SCX, are spatially restricted to ecto- or endocranial domains and undergo regionally selective differentiation into ligament, bone, and cartilage. Differentiation of SCX+ AF cells is dependent on FGFR2 signaling in cells of the osteogenic fronts which, when fueled by FGF18 from the ectocranial mesenchyme, express the secreted WNT inhibitor WIF1 to regulate WNT signaling in neighboring AF cells. Upon loss of Fgfr2 , Wif1 expression is lost, and cells of the AF retain a connective tissue-like fate failing to form the posterior frontal suture. This study provides new insights into regional differences in suture development by identifying an FGF-WNT signaling circuit within the AF that links frontal bone advancement with suture joint formation.

2.
Development ; 149(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35831953

RESUMEN

During craniofacial development, the oral epithelium begins as a morphologically homogeneous tissue that gives rise to locally complex structures, including the teeth, salivary glands and taste buds. How the epithelium is initially patterned and specified to generate diverse cell types remains largely unknown. To elucidate the genetic programs that direct the formation of distinct oral epithelial populations, we mapped the transcriptional landscape of embryonic day 12 mouse mandibular epithelia at single cell resolution. Our analysis identified key transcription factors and gene regulatory networks that define different epithelial cell types. By examining the spatiotemporal patterning process along the oral-aboral axis, our results propose a model in which the dental field is progressively confined to its position by the formation of the aboral epithelium anteriorly and the non-dental oral epithelium posteriorly. Using our data, we also identified Ntrk2 as a proliferation driver in the forming incisor, contributing to its invagination. Together, our results provide a detailed transcriptional atlas of the embryonic mandibular epithelium, and unveil new genetic markers and regulators that are present during the specification of various oral epithelial structures.


Asunto(s)
Papilas Gustativas , Transcriptoma , Animales , Epitelio/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Transducción de Señal/genética , Análisis de la Célula Individual , Papilas Gustativas/metabolismo , Transcriptoma/genética
3.
Int J Oral Sci ; 13(1): 4, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33547271

RESUMEN

During embryonic development, organs undergo distinct and programmed morphological changes as they develop into their functional forms. While genetics and biochemical signals are well recognized regulators of morphogenesis, mechanical forces and the physical properties of tissues are now emerging as integral parts of this process as well. These physical factors drive coordinated cell movements and reorganizations, shape and size changes, proliferation and differentiation, as well as gene expression changes, and ultimately sculpt any developing structure by guiding correct cellular architectures and compositions. In this review we focus on several craniofacial structures, including the tooth, the mandible, the palate, and the cranium. We discuss the spatiotemporal regulation of different mechanical cues at both the cellular and tissue scales during craniofacial development and examine how tissue mechanics control various aspects of cell biology and signaling to shape a developing craniofacial organ.


Asunto(s)
Cráneo , Diente , Diferenciación Celular , Morfogénesis , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA