Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(8)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37630501

RESUMEN

It is evident that legume root nodules can accommodate rhizobial and non-rhizobial bacterial endophytes. Our recent nodule microbiome study in peanuts described that small nodules can harbor diverse bacterial endophytes. To understand their functional role, we isolated 87 indigenous endophytes from small nodules of field-grown peanut roots and characterized them at molecular, biochemical, and physiological levels. The amplified 16S rRNA genes and phylogenetic analysis of these isolates revealed a wide variety of microorganisms related to the genera Bacillus, Burkholderia, Enterobacter, Herbaspirillum, Mistsuaria, Pantoea, Pseudomonas, and Rhizobia. It was observed that 37% (100% identity) and 56% (>99% identity) of the isolates matched with the amplified sequence variants (ASVs) from our previous microbiome study. All of these isolates were tested for stress tolerance (high temperature, salinity, acidic pH) and phosphate (P) solubilization along with ammonia (NH3), indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate deaminase (ACCD), and siderophore production. The majority (78%) of the isolates were found to be halotolerant, thermotolerant, and acidophilic, and a few of them showed a significant positive response to the production of IAA, NH3, siderophore, ACCD, and P-solubilization. To evaluate the plant growth promotion (PGP) activity, plant and nodulation assays were performed in the growth chamber conditions for the selected isolates from both the non-rhizobial and rhizobial groups. However, these isolates appeared to be non-nodulating in the tested conditions. Nonetheless, the isolates 2 (Pantoea), 17 (Burkholderia), 21 (Herbaspirillum), 33o (Pseudomonas), and 77 (Rhizobium sp.) showed significant PGP activity in terms of biomass production. Our findings indicate that these isolates have potential for future biotechnological applications through the development of biologicals for sustainable crop improvement.

2.
Sci Total Environ ; 826: 154161, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35231506

RESUMEN

Tillage is a common agricultural practice and a critical component of agricultural systems that is frequently employed worldwide in croplands to reduce climatic and soil restrictions while also sustaining various ecosystem services. Tillage can affect a variety of soil-mediated processes, e.g., soil carbon sequestration (SCS) or depletion, greenhouse gas (GHG) (CO2, CH4, and N2O) emission, and water pollution. Several tillage practices are in vogue globally, and they exhibit varied impacts on these processes. Hence, there is a dire need to synthesize, collate and comprehensively present these interlinked phenomena to facilitate future researches. This study deals with the co-benefits and trade-offs produced by several tillage practices on SCS and related soil properties, GHG emissions, and water quality. We hypothesized that improved tillage practices could enable agriculture to contribute to SCS and mitigate GHG emissions and leaching of nutrients and pesticides. Based on our current understanding, we conclude that sustainable soil moisture level and soil temperature management is crucial under different tillage practices to offset leaching loss of soil stored nutrients/pesticides, GHG emissions and ensuring SCS. For instance, higher carbon dioxide (CO2) and nitrous oxide (N2O) emissions from conventional tillage (CT) and no-tillage (NT) could be attributed to the fluctuations in soil moisture and temperature regimes. In addition, NT may enhance nitrate (NO3-) leaching over CT because of improved soil structure, infiltration capacity, and greater water flux, however, suggesting that the eutrophication potential of NT is high. Our study indicates that the evaluation of the eutrophication potential of different tillage practices is still overlooked. Our study suggests that improving tillage practices in terms of mitigation of N2O emission and preventing NO3- pollution may be sustainable if nitrification inhibitors are applied.


Asunto(s)
Gases de Efecto Invernadero , Plaguicidas , Agricultura , Dióxido de Carbono/análisis , Secuestro de Carbono , Ecosistema , Metano/análisis , Óxido Nitroso/análisis , Suelo , Calidad del Agua
3.
Sci Total Environ ; 815: 152928, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34999062

RESUMEN

Soil carbon sequestration (SCS) refers to the uptake of carbon (C) containing substances from the atmosphere and its storage in soil C pools. Soil microbial community (SMC) play a major role in C cycling and their activity has been considered as the main driver of differences in the potential to store C in soils. The composition of the SMC is crucial for the maintenance of soil ecosystem services, as the structure and activity of SMC also regulates the turnover and delivery of nutrients, as well as the rate of decomposition of soil organic matter (SOM). Quantifying the impact of agricultural practices on both SMC and SCS is key to improve sustainability of soil management. Hence, we discuss the impact of farming practices improving SCS by altering SMC, SOM, and soil aggregates, unraveling their inter-and intra-relationships. Using quantitative and process driven insights from 197 peer-reviewed publications leads to the conclusion that the net benefits from agricultural management to improve SCS would not be sustainable if we overlook the role of soil microbial community. Reintroduction of the decayed microbial community to agricultural soils is crucial for enhancing long-term C storage potential of soils and stabilize them over time. The interactions among SMC, SOM, soil aggregates, and agricultural activities still require more knowledge and research to understand their full contribution to the SCS.


Asunto(s)
Microbiota , Suelo , Carbono , Secuestro de Carbono , Microbiología del Suelo
4.
Sci Total Environ ; 790: 148169, 2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34380249

RESUMEN

Global land use changes that tend to satisfy the food needs of augmenting population is provoking agricultural soils to act as a carbon (C) source rather than sink. Agricultural management practices are crucial to offset the anthropogenic C emission; hence, Carbon sequestration (CS) in agriculture is a viable option for reversing this cycle, but it is based on hypotheses that must be questioned in order to contribute to the development of new agricultural techniques. This review summarizes a global perspective focusing on 5 developing countries (DC) (Bangladesh, Brazil, Argentina, Nigeria and Mexico) because of their importance on global C budget and on the agricultural sector as well as the impact produced by several global practices such as tillage, agroforestry systems, silvopasture, 4p1000 on CO2 sequestration. We also discussed about global policies regarding CS and tools available to measure CS. We found that among all practices agroforestry deemed to be the most promising approach and conversion from pasture to agroforestry will be favorable to both farmers and in changing climate, (e.g., agroforestry systems can generate 725 Euroeq C credit in EU) while some strategies (e.g. no-tillage) supposed to be less promising and over-hyped. In terms of conservative tillage (no-, reduced-, and minimal tillage systems), global and DC's land use increased. However, the impact of no-tillage is ambiguous since the beneficial impact is only limited to top soil (0-10 cm) as opposed to conventional mechanisms. Grasses, cereals and cover crops have higher potential of CS in their soils. While the 4p1000 initiative appears to be successful in certain areas, further research is needed to validate this possible mode of CS. Furthermore, for effective policy design and implementation to obtain more SOC stock, we strongly emphasize to include farmers globally as they are the one and only sustainable driver, hence, government and associated authorities should take initiatives (e.g., stimulus incentives, C credits) to form C market and promote C plantings. Otherwise, policy failure may occur. Moreover, to determine the true effect of these activities or regulations on CS, we must concurrently analyze SOC stock adjustments using models or direct measurements. Above all, SOC is the founding block of sustainable agriculture and inextricably linked with food security. Climate-smart managing of agriculture is very crucial for a massive SOC stock globally especially in DC's.


Asunto(s)
Dióxido de Carbono , Calentamiento Global , Agricultura , Carbono , Dióxido de Carbono/análisis , Secuestro de Carbono , Países en Desarrollo , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA