Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pancreas ; 44(4): 636-47, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25875801

RESUMEN

OBJECTIVES: To further elucidate the anticancer mechanisms of metformin against pancreatic cancer, we evaluated the inhibitory effects of metformin on pancreatic tumorigenesis in a genetically engineered mouse model and investigated its possible anti-inflammatory and antiangiogenesis effects. METHODS: Six-week-old LSL-Kras;Trp53 mice (10 per group) were administered once daily intraperitoneally with saline (control) for 1 week or metformin (125 mg/kg) for 1 week (Met_1wk) or 3 weeks (Met_3wk) before tumor initiation. All mice continued with their respective injections for 6 weeks after tumor initiation. Molecular changes were evaluated through quantitative polymerase chain reaction, immunohistochemistry, and Western blotting. RESULTS: At euthanasia, pancreatic tumor volume in the Met_1wk (median, 181.8 mm) and Met_3wk (median, 137.9 mm) groups was significantly lower than those in the control group (median, 481.1 mm; P = 0.001 and 0.0009, respectively). No significant difference was observed between the Met_1wk and Met_3wk groups (P = 0.51). These results were further confirmed using tumor weight and tumor burden measurements. Furthermore, metformin treatment decreased the phosphorylation of nuclear factor κB and signal transducer and activator of transcription 3 as well as the expression of specificity protein 1 transcription factor and several nuclear factor κB-regulated genes. CONCLUSIONS: Metformin may inhibit pancreatic tumorigenesis by modulating multiple molecular targets in inflammatory pathways.


Asunto(s)
Antineoplásicos/farmacología , Biomarcadores de Tumor/antagonistas & inhibidores , Metformina/farmacología , FN-kappa B/antagonistas & inhibidores , Neoplasias Pancreáticas/tratamiento farmacológico , Factor de Transcripción STAT3/antagonistas & inhibidores , Carga Tumoral/efectos de los fármacos , Animales , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/metabolismo , Western Blotting , Esquema de Medicación , Femenino , Inmunohistoquímica , Inyecciones Intraperitoneales , Masculino , Metformina/uso terapéutico , Ratones , Ratones Transgénicos , FN-kappa B/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Reacción en Cadena de la Polimerasa , Distribución Aleatoria , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos
2.
Thyroid ; 15(5): 422-6, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15929662

RESUMEN

Thyroid transcription factor-1 (TTF-1) is required for maximal expression of thyrotropin receptor (TSHR) in the thyroid. Extrathyroidal TSHR expression is detectable in normal orbital adipose tissues, with increased levels found in orbital tissues from patients with Graves' ophthalmopathy (GO), and in orbital preadipocyte cultures following differentiation. In order to determine whether TTF-1 might be involved in orbital TSHR expression, we used quantitative real-time polymerase chain reaction (PCR) to assess relative expression of this and other thyroid-associated transcription factors (TTF-2 and Pax-8) in GO orbital tissue specimens (n = 28) and cultures (n = 3), and in normal orbital tissues (n = 19) and cultures (n = 3). We detected TTF-1 and TTF-2 mRNA in GO and normal orbital tissue samples, with no difference in levels noted between the tissues. In the GO orbital cultures, TTF-1 mRNA was higher in differentiated than in control (undifferentiated) cultures (p < 0.05), while TTF-2 was unchanged. In the normal cultures, neither TTF-1 nor TTF-2 mRNA levels increased in differentiated cultures. Pax8 was undetectable in all orbital tissues and cell cultures. The presence of mRNA encoding TTF-1 in orbital tissues and cultures suggest that this transcription factor may play an important role in extrathyroidal, as it does in thyroidal, TSHR expression.


Asunto(s)
Tejido Adiposo/metabolismo , Proteínas Nucleares/metabolismo , Órbita/metabolismo , Receptores de Tirotropina/biosíntesis , Factores de Transcripción/metabolismo , Adenosina Trifosfatasas , Adipocitos/metabolismo , Diferenciación Celular , Células Cultivadas , Cartilla de ADN/farmacología , ADN Complementario/biosíntesis , ADN Complementario/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Factor de Transcripción PAX8 , Factores de Transcripción Paired Box , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor Nuclear Tiroideo 1 , Transactivadores/metabolismo
3.
Arch Biochem Biophys ; 416(1): 53-67, 2003 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12859982

RESUMEN

CYP1B1 is unique among P450 cytochromes in exhibiting inductive responses mediated by both the Ah receptor (AhR) and cAMP. cAMP induction was mediated either by a 189bp far upstream enhancer region (FUER, -5110 to -5298) or by a 230bp AhR-responsive enhancer region (AhER) (-797 to -1026). CYP1B1 luciferase reporters respond selectively to cAMP and TCDD in adrenal Y-1 cells (only cAMP), testis MA10 cells (cAMP>TCDD), and C3H10T1/2 mouse embryo fibroblasts (only TCDD). In Y-1 cells, which lack AhR, cAMP induction is totally dependent on the FUER, including absolute requirements for upstream and downstream halves of this region, and for CREB activity at a CRE sequence located at the 3(')-end. cAMP stimulation of the FUER was remarkably high (27-fold) and equally effective when linked to an HSV-TK promoter, indicating direct cAMP activation of the FUER. Binding of CREB to the essential CRE was demonstrated along with dominant negative effects of functionally impaired mutants. cAMP induction in MA10 cells was partially mediated by the FUER mechanism but was regulated additionally by AhER through AhR activity. MA10 cells also exhibit cAMP-dependent AhR down-regulation and AhR/Arnt complex formation. Mutations in AhER including XRE5 were similarly inhibitory to cAMP stimulation in MA10 cells and to TCDD stimulation in C3H10T1/2 cells. Transfection of AhR into the AhR-deficient Y-1 cells did not introduce this second mechanism, which indicated a need for additional components that are present in MA10 cells.


Asunto(s)
Glándulas Suprarrenales/fisiología , Hidrocarburo de Aril Hidroxilasas/metabolismo , AMP Cíclico/metabolismo , Elementos de Facilitación Genéticos , Receptores de Hidrocarburo de Aril/metabolismo , Testículo/fisiología , Glándulas Suprarrenales/citología , Glándulas Suprarrenales/efectos de los fármacos , Animales , Hidrocarburo de Aril Hidroxilasas/efectos de los fármacos , Hidrocarburo de Aril Hidroxilasas/genética , Secuencia de Bases , Sitios de Unión , Células Cultivadas , AMP Cíclico/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Citocromo P-450 CYP1B1 , Elementos de Facilitación Genéticos/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Masculino , Ratones , Datos de Secuencia Molecular , Dibenzodioxinas Policloradas/farmacología , Regiones Promotoras Genéticas , Ratas , Receptores de Hidrocarburo de Aril/efectos de los fármacos , Receptores de Hidrocarburo de Aril/genética , Testículo/citología , Testículo/efectos de los fármacos , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA