Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 126(43): 8760-8770, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36283072

RESUMEN

Protein aggregation is mediated by a complex interplay of noncovalent interactions and is associated with a broad range of aspects from debilitating human diseases to the food industry and therapeutic biotechnology. Deciphering the intricate roles of noncovalent interactions is of paramount importance for the design of effective inhibitory and disaggregation strategies, which remains a formidable challenge. By using a combination of spectroscopic and microscopic tools, here we show that the surfactant-mediated protein aggregation can be modulated by an intriguing interplay of hydrophobic and electrostatic effects. Additionally, our results illuminate the unique role of salt as a potent disaggregation inducer that alters the protein-surfactant electrostatic interactions and triggers the dissolution of preformed protein aggregates resulting in restoring the native protein structure. This unusual salt-induced dissolution and refolding offers a unique approach to regulating the balance between protein self-assembly and disassembly and will offer a potent strategy to design electrostatically targeted inhibitors.


Asunto(s)
Agregado de Proteínas , Proteínas , Humanos , Solubilidad , Electricidad Estática , Interacciones Hidrofóbicas e Hidrofílicas , Tensoactivos/química , Cloruro de Sodio
2.
Eur Biophys J ; 49(6): 425-434, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32691116

RESUMEN

Amyloids are pathological hallmarks of a number of debilitating neurodegenerative diseases. Understanding the molecular mechanism of protein amyloid assembly with an emphasis on structural characterization of early, key prefibrillar species is important for targeted drug design and clinical interventions. Tau is an intrinsically disordered, microtubule-binding protein which is also implicated in various neurodegenerative disorders such as frontotemporal dementia, Down's syndrome, Alzheimer's disease, etc. Earlier reports have demonstrated that tau aggregation in vitro is triggered by anionic inducers, presumably due to charge compensation which facilitates intermolecular association between the tau polypeptide chains. However, the molecular mechanism of tau amyloid aggregation, involving the structural characterization of amyloidogenic intermediates formed especially during early key steps, remains elusive. In this work, we have employed a spectroscopic toolbox to elucidate the mechanism of anionic surfactant-induced disorder-to-order amyloid transition of a tau segment. This study revealed that the amyloid assembly is mediated via binding-induced conformational switching into an early partially helical amyloid-competent intermediate. Additionally, protein and inducer concentration-dependent studies indicated that at the higher protein and/or inducer concentrations, competing off-pathway intermediates dampen the amyloid assembly which implies that the stoichiometry of protein and inducer plays a key regulatory role in the amyloid nucleation and fibril elongation kinetics.


Asunto(s)
Amiloide/química , Agregado de Proteínas , Tensoactivos/química , Proteínas tau/química , Humanos , Cinética , Conformación Proteica
3.
J Phys Chem B ; 121(2): 412-419, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-28005369

RESUMEN

In contrast to pathological amyloids, functional amyloids are involved in crucial physiological functions. For instance, the melanosomal protein comprising a highly amyloidogenic polypeptide repeat domain assembles into amyloid fibrils that act as templates for melanin biosynthesis within acidic melanosomes. However, the mechanism-morphology-function relationship of functional amyloids is poorly understood. Here, we demonstrate that the repeat domain of the melanosomal protein exhibits two distinct types of aggregation pathways that display nanoscale polymorphism in acidic pH. In the pH range of 4.5-6, aggregation proceeds via a typical nucleation-dependent mechanism, resulting in the formation of highly ordered ß-rich curvy thread-like fibrils. On the contrary, at pH < 4.5, aggregation occurs through a rapid nucleation-independent isodesmic polymerization process that yields dendritic aggregates having lower degree of internal packing. These dendritic nanostructures can be converted into more stable fibrils by switching the pH. The nanoscale polymorphism associated with the mechanistic switch is likely to be mediated by the altered conformational propensities and intermolecular interactions due to the protonation/deprotonation of critical glutamate residues. We propose that this striking shift in the mechanism that dictates the nanoscale morphology regulates the melanosomal maturation.


Asunto(s)
Amiloide/química , Proteínas Amiloidogénicas/química , Nanoestructuras/química , Antígeno gp100 del Melanoma/química , Concentración de Iones de Hidrógeno , Cinética , Multimerización de Proteína
4.
J Phys Chem Lett ; 7(20): 4105-4110, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27689394

RESUMEN

Water plays a critical role in governing the intricate balance between chain-chain and chain-solvent interactions during protein folding, misfolding, and aggregation. Previous studies have indicated the presence of different types of water in folded (globular) proteins. In this work, using femtosecond and picosecond time-resolved fluorescence measurements, we have characterized the solvation dynamics from ultrafast to ultraslow time scale both in the monomeric state and in the amyloid state of an intrinsically disordered protein, namely κ-casein. Monomeric κ-casein adopts a compact disordered state under physiological conditions and is capable of spontaneously aggregating into highly ordered ß-rich amyloid fibrils. Our results indicate that the mobility of "biological water" (type I) gets restrained as a result of conformational sequestration during amyloid formation. Additionally, a significant decrease in the bulk water component with a concomitant increase in the ultraslow component revealed the ordering of trapped interstitial water (type II) upon disorder-to-order amyloid transition. Our results provide an experimental underpinning of significant water rearrangements associated with both chain desolvation and water confinement upon amyloid formation.

5.
Biophys J ; 111(4): 768-774, 2016 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-27558720

RESUMEN

The fundamental backbone dynamics of unfolded proteins arising due to intrinsic ϕ-ψ dihedral angle fluctuations dictate the course of protein folding, binding, assembly, and function. These internal fluctuations are also critical for protein misfolding associated with a range of human diseases. However, direct observation and unambiguous assignment of this inherent dynamics in chemically denatured proteins is extremely challenging due to various experimental limitations. To directly map the backbone torsional mobility in the ϕ-ψ dihedral angle space, we used a model intrinsically disordered protein, namely, α-synuclein, that adopts an expanded state under native conditions. We took advantage of nonoccurrence of tryptophan in α-synuclein and created a number of single-tryptophan variants encompassing the entire polypeptide chain. We then utilized highly sensitive picosecond time-resolved fluorescence depolarization measurements that allowed us to discern the site-specific torsional relaxation at a low protein concentration under physiological conditions. For all the locations, the depolarization kinetics exhibited two well-separated rotational-correlation-time components. The shorter, subnanosecond component arises due to the local mobility of the indole side chain, whereas the longer rotational-correlation-time component (1.37 ± 0.15 ns), independent of global tumbling, represents a characteristic timescale for short-range conformational exchange in the ϕ-ψ dihedral space. This correlation time represents an intrinsic timescale for torsional relaxation and is independent of position, which is expected for an extended polypeptide chain having little or no propensity to form persistent structures. We were also able to capture this intrinsic timescale at the N-terminal unstructured domain of the prion protein. Our estimated timescale of the segmental mobility is similar to that of unfolded proteins studied by nuclear magnetic resonance in conjunction with molecular dynamics simulations. Our results have broader implications for a diverse range of functionally and pathologically important intrinsically disordered proteins and disordered regions.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Movimiento , Secuencia de Aminoácidos , Humanos , Simulación de Dinámica Molecular , Conformación Proteica
6.
Biochemistry ; 54(51): 7505-13, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26645611

RESUMEN

Conformational switching of the prion protein (PrP) from an α-helical normal cellular form (PrP(C)) to an aggregation-prone and self-propagating ß-rich scrapie form (PrP(Sc)) underlies the molecular basis of pathogenesis in prion diseases. Anionic lipids play a critical role in the misfolding and conformational conversion of the membrane-anchored PrP into the amyloidogenic pathological form. In this work, we have used a diverse array of techniques to interrogate the early intermediates during amyloid formation from recombinant human PrP in the presence of a membrane mimetic anionic detergent such as sodium dodecyl sulfate. We have been able to detect and characterize two distinct types of interconvertible oligomers. Our results demonstrate that highly ordered large ß-oligomers represent benign off-pathway intermediates that lack the ability to mature into amyloid fibrils. On the contrary, structurally labile small oligomers are capable of switching to an ordered amyloid-state that exhibits profound toxicity to mammalian cells. Our fluorescence resonance energy transfer measurements revealed that the partially disordered PrP serves as precursors to small amyloid-competent oligomers. These on-pathway oligomers are eventually sequestered into higher order supramolecular assemblies that conformationally mature into polymorphic amyloids possessing varied nanoscale morphology as evident by the atomic force microscopy imaging. The nanoscale diversity of fibril architecture is attributed to the heterogeneous ensemble of early obligatory oligomers and offers a plausible explanation for the existence of multiple prion strains in vivo.


Asunto(s)
Amiloide/química , Biopolímeros/química , Nanoestructuras , Priones/química , Microscopía de Fuerza Atómica , Conformación Proteica , Análisis Espectral
7.
Phys Chem Chem Phys ; 17(35): 22862-71, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26264974

RESUMEN

The self-assembly of proteins triggered by a conformational switch into highly ordered ß-sheet rich amyloid fibrils has captivated burgeoning interest in recent years due to the involvement of amyloids in a variety of human diseases and a diverse range of biological functions. Here, we have investigated the mechanism of fibrillogenesis of human serum albumin (HSA), an all-α-helical protein, using an array of biophysical tools that include steady-state as well as time-resolved fluorescence, circular dichroism and Raman spectroscopy in conjunction with atomic force microscopy (AFM). Investigations into the temporal evolution of nanoscale morphology using AFM revealed the presence of ring-like intermediates that subsequently transformed into worm-like fibrils presumably by a ring-opening mechanism. Additionally, a multitude of morphologically-diverse oligomers were observed on the pathway to amyloid formation. Kinetic analysis using multiple structural probes in-tandem indicated that HSA amyloid assembly is a concerted process encompassing a major structural change that is primarily mediated by hydrophobic interactions between thermally-induced disordered segments originating in various domains. A slower growth kinetics of aggregates suggested that the protein structural reorganization is a prerequisite for fibril formation. Moreover, time-dependent Raman spectroscopic studies of HSA aggregation provided key molecular insights into the conformational transitions occurring within the protein amide backbone and at the residue-specific level. Our data revealed the emergence of conformationally-diverse disulfides as a consequence of structural reorganization and sequestration of tyrosines into the hydrophobic amyloid core comprising antiparallel cross ß-sheets.


Asunto(s)
Amiloide/química , Amiloide/síntesis química , Albúmina Sérica/química , Dicroismo Circular , Fluorescencia , Humanos , Cinética , Microscopía de Fuerza Atómica , Espectrometría Raman
8.
Langmuir ; 31(32): 8911-22, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26209136

RESUMEN

Amyloid assembly is inherently a stochastic and a hierarchical process comprising the genesis of heterogeneous, transiently populated prefibrillar aggregates that are characterized to be non-native oligomeric conformers. These oligomers could be either off-pathway or on-pathway species en route to amyloid fibrils that are associated with a variety of neurodegenerative disorders, namely, Alzheimer's disease, Parkinson's disease, and prion disease, as well as in localized and systemic amyloidoses (type II diabetes and dialysis related, respectively). Morphological characterizations of these prefibrillar aggregates indicated that apparently the doughnut or annular structure is commonly shared among various prefibrillar species irrespective of the diverse native structures and aggregation mechanisms. In this work, we have elucidated the self-assembly mechanism of amyloid pore formation from ovalbumin using a range of biophysical techniques that shed light on the time-dependent protein structural changes as aggregation progressed. Additionally, on the basis of several pieces of evidence suggesting amyloid pore-mediated cytotoxicity, we have investigated the annular amyloid-membrane interaction using a comprehensive biophysical approach. The influences of annular pores on the intramembrane dipole potential and bilayer fluidity, as a consequence of membrane permeabilization, were examined in a protein concentration- and time-dependent manner that provided important insights into the pore-membrane interactions. Instantaneous membrane permeabilization kinetics suggested that plausibly a detergent-like carpet mechanism during membrane disruption was effective. Moreover, it was inferred that a loss of membrane integrity resulted in the generation of both disordered lipid and disoriented water dipoles that reside in the immediate vicinity of the membrane bilayer. These key findings may have implications in amyloid-pore-induced deleterious effects during amyloid-membrane interactions.


Asunto(s)
Amiloide/química , Amiloide/síntesis química , Membrana Dobles de Lípidos/química , Fluidez de la Membrana , Ovalbúmina/química , Cinética , Modelos Moleculares , Tamaño de la Partícula , Permeabilidad , Propiedades de Superficie , Factores de Tiempo
9.
J Phys Chem Lett ; 4(3): 480-5, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-26281744

RESUMEN

Protein aggregation leading to various nanoscale assemblies is under scrutiny due to its implications in a broad range of human diseases. In the present study, we have used ovalbumin, a model non-inhibitory serpin, to elucidate the molecular events involved in amyloid assembly using a diverse array of spectroscopic and imaging tools such as fluorescence, laser Raman, circular dichroism spectroscopy, and atomic force microscopy (AFM). The AFM images revealed a progressive morphological transition from spherical oligomers to nanoscopic annular pores that further served as templates for higher-order supramolecular assembly into larger amyloid pores. Raman spectroscopic investigations illuminated in-depth molecular details into the secondary structural changes of the protein during amyloid assembly and pore formation. Additionally, Raman measurements indicated the presence of antiparallel ß-sheets in the amyloid core. Overall, our studies revealed that the protein conformational switch in the context of the oligomers triggers the hierarchical assembly into nanoscopic amyloid pores. Our results will have broad implications in the structural characterization of amyloid pores derived from a variety of disease-related proteins.

10.
J Phys Chem Lett ; 3(13): 1783-7, 2012 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-26291859

RESUMEN

Amyloid formation is implicated in a variety of human diseases. It is important to perform high-resolution optical imaging of individual amyloid fibrils to delineate the structural basis of supramolecular protein assembly. However, amyloid fibrils do not lend themselves to the conventional microscopic resolution, which is hindered by the diffraction limit. Here we show super-resolution fluorescence imaging of fluorescently stained amyloid fibrils derived from disease-associated human ß2-microglobulin using near-field scanning fluorescence microscopy. Using this technique, we were able to resolve the fibrils that were spatially separated by ∼75 nm. We have also been able to interrogate individual fibrils in a fibril-by-fibril manner by simultaneously monitoring both nanoscale topography and fluorescence brightness along the length of the fibrils. This method holds promise to detect conformational distributions and heterogeneity that are believed to correlate with the supramolecular packing of misfolded proteins within the fibrils in a diverse conformationally enciphered prion strains and amyloid polymorphs.

11.
J Phys Chem B ; 116(1): 520-31, 2012 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-22097968

RESUMEN

Ovalbumin is a 45 kDa egg-white glycoprotein which belongs to the class of serpin superfamily. We have studied the structural properties of both native and partially unfolded molten-globule forms of ovalbumin using a diverse array of spectroscopic tools. Time-resolved fluorescence measurements provided important structural and dynamical insights into the native and molten-globule states. Fluorescence anisotropy decay analysis indicated that there is a conformational swelling from the native to the molten-globule form of ovalbumin. We have also carried out red-edge excitation shift measurements to probe the dipolar relaxation dynamics around the intrinsic tryptophan residues. Additionally, stopped-flow fluorescence experiments revealed that the conformational transition from the native to the molten-globule form proceeds in a stepwise manner involving a burst-phase with a submillisecond conformational change followed by biphasic slower conformational reorganizations on the millisecond time scale leading to the final molten-globule state.


Asunto(s)
Ovalbúmina/química , Dicroismo Circular , Concentración de Iones de Hidrógeno , Cinética , Desnaturalización Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Espectrometría de Fluorescencia
12.
Biophys J ; 101(7): 1720-9, 2011 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-21961598

RESUMEN

Natively unfolded or intrinsically disordered proteins (IDPs) are under intense scrutiny due to their involvement in both normal biological functions and abnormal protein misfolding disorders. Polypeptide chain collapse of amyloidogenic IDPs is believed to play a key role in protein misfolding, oligomerization, and aggregation leading to amyloid fibril formation, which is implicated in a number of human diseases. In this work, we used bovine κ-casein, which serves as an archetypal model protein for amyloidogenic IDPs. Using a variety of biophysical tools involving both prediction and spectroscopic techniques, we first established that monomeric κ-casein adopts a collapsed premolten-globule-like conformational ensemble under physiological conditions. Our time-resolved fluorescence and light-scattering data indicate a change in the mean hydrodynamic radius from ∼4.6 nm to ∼1.9 nm upon chain collapse. We then took the advantage of two cysteines separated by 77 amino-acid residues and covalently labeled them using thiol-reactive pyrene maleimide. This dual-labeled protein demonstrated a strong excimer formation upon renaturation from urea- and acid-denatured states under both equilibrium and kinetic conditions, providing compelling evidence of polypeptide chain collapse under physiological conditions. The implication of the IDP chain collapse in protein aggregation and amyloid formation is also discussed.


Asunto(s)
Proteínas Amiloidogénicas/química , Caseínas/química , Secuencia de Aminoácidos , Proteínas Amiloidogénicas/metabolismo , Animales , Caseínas/metabolismo , Bovinos , Biología Computacional , Polarización de Fluorescencia , Transferencia Resonante de Energía de Fluorescencia , Cinética , Luz , Datos de Secuencia Molecular , Péptidos/química , Péptidos/metabolismo , Multimerización de Proteína , Pirenos/química , Dispersión de Radiación
13.
J Phys Chem B ; 115(14): 4195-205, 2011 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-21417250

RESUMEN

We have investigated the fibrillation propensity of different conformational isomers of an archetypal, all α-helical protein, namely, bovine serum albumin (BSA), under different pH conditions and ionic strengths using fluorescence and circular dichroism (CD) spectroscopy. At low pH and higher protein concentration, the partially folded conformers associate to form oligomers that are converted into ordered amyloid-like fibrils when incubated at elevated temperature. We have elucidated the mechanism of fibril formation, especially the early steps, by monitoring the kinetics of structural changes during the aggregation process. Various structural probes in tandem were utilized to decipher the temporal evolution of both conformational and size changes by measuring the time dependence of fluorescence intensity and anisotropy of intrinsic tryptophans and several extrinsic fluorophores during the aggregation. Additionally, CD spectroscopy was utilized to monitor the changes in protein secondary structural content during fibrillation. Our findings suggest that the conformational conversion occurs in the oligomers that serve as precursors to amyloid fibrils and precedes the overall fibrillar growth.


Asunto(s)
Amiloide/química , Albúmina Sérica Bovina/química , Animales , Bovinos , Dicroismo Circular , Concentración de Iones de Hidrógeno , Estructura Secundaria de Proteína
14.
J Fluoresc ; 21(3): 1083-90, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21128099

RESUMEN

Serum albumins are multi-domain all α-helical proteins that are present in the circulatory system and aid in the transport of a variety of metabolites, endogenous ligands, drugs etc. Earlier observations have indicated that serum albumins adopt a range of reversible conformational isomers depending on the pH of the solution. Herein, we report the concurrent changes in the protein conformation and size that are inherent to the pH-induced conformational isomers of bovine serum albumin (BSA). We have investigated the fluorescence properties of both intrinsic (tryptophan) and extrinsic (ANS, pyrene) fluorophores to shed light into the structural features of the pH-dependent conformers. We have been able to identify a number of conformational isomers using multiple fluorescence observables as a function of pH titration. Our results indicate that at pH 3, a partially-folded, 'molten-globule-like' state is populated. Moreover, equilibrium unfolding studies indicated that the 'molten-globule-like' state unfolds in a non-cooperative fashion and is thermodynamically less stable than the native state. The fluorescence-based approach described in the present work has implications in the study of pH-induced conformational plasticity of other physiologically relevant proteins.


Asunto(s)
Fluorescencia , Pliegue de Proteína , Albúmina Sérica Bovina/química , Naftalenosulfonatos de Anilina , Concentración de Iones de Hidrógeno , Isomerismo , Conformación Proteica , Triptófano
15.
J Fluoresc ; 21(2): 615-25, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20953821

RESUMEN

The study of protein conformational changes in the presence of surfactants and lipids is important in the context of protein folding and misfolding. In the present study, we have investigated the mechanism of the protein conformational change coupled with aggregation leading to size growth of Hen Egg White Lysozyme (HEWL) in the presence of an anionic detergent such as sodium dodecyl sulphate (SDS) in alkaline pH. We have utilized intrinsic protein fluorescence (tryptophan) and extrinsic fluorescent reporters such as 8-anilinonaphthalene-1-sulfonic acid (ANS), dansyl and fluorescein to follow the protein conformational change in real-time. By analyzing the kinetics of fluorescence intensity and anisotropy of multiple fluorescent reporters, we have been able to delineate the mechanism of surfactant-induced aggregation of lysozyme. The kinetic parameters reveal that aggregation proceeds with an initial fast-phase (conformational change) followed by a slow-phase (self-assembly). Our results indicate that SDS, below critical micelle concentration, induces conformational expansion that triggers the aggregation process at a micromolar protein concentration range.


Asunto(s)
Muramidasa/química , Multimerización de Proteína/efectos de los fármacos , Tensoactivos/farmacología , Secuencia de Aminoácidos , Animales , Relación Dosis-Respuesta a Droga , Colorantes Fluorescentes/química , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína/efectos de los fármacos , Dodecil Sulfato de Sodio/farmacología , Solubilidad , Espectrometría de Fluorescencia
16.
J Phys Chem B ; 112(10): 2842-7, 2008 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-18271574

RESUMEN

We report the quadratic nonlinearity of one- and two-electron oxidation products of the first series of transition metal complexes of meso-tetraphenylporphyrin (TPP). Among many MTPP complexes, only CuTPP and ZnTPP show reversible oxidation/reduction cycles as seen from cyclic voltammetry experiments. While centrosymmetric neutral metalloporphyrins have zero first hyperpolarizability, beta, as expected, the cation radicals and dications of CuTPP and ZnTPP have very high beta values. The one- and two-electron oxidation of the MTPPs leads to symmetry-breaking of the metal-porphyrin core, resulting in a large beta value that is perhaps aided in part by contributions from the two-photon resonance enhancement. The calculated static first hyperpolarizabilities, beta0, which are evaluated in the framework of density functional theory by a coupled perturbed Hartree-Fock method, support the experimental trend. The switching of optical nonlinearity has been achieved between the neutral and the one-electron oxidation products but not between the one- and the two-electron oxidation products since dications that are electrochemically reversible are unstable due to the formation of stable isoporphyrins in the presence of nucleophiles such as halides.

17.
J Phys Chem B ; 111(25): 7122-6, 2007 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-17530800

RESUMEN

The formation and quadratic nonlinearity of a multiple hydrogen-bonded 1:1 supramolecular complex 1.2 between the 2,6-diaminopyridine-based Lambda-shaped molecule, 1, and ferrocenyl barbituric acid, 2, in solution have been investigated by the hyper-Rayleigh scattering (HRS) and NMR techniques. A 6-fold increase in the molecular hyperpolarizability (beta) of the complex 1.2 over the sum of the molecular hyperpolarizabilities of the components 1 and 2 is seen. Such a significant enhancement in beta is attributed to the alignment of the molecular dipoles of 1 and 2 in the 2D plane leading to the creation of a large dipole moment in the plane of the supramolecular complex. Depolarized HRS experiments led to the determination of the in-plane polarization components of beta of the supramolecular complex 1.2. The component of beta in the direction of the dipole moment is large. This investigation exemplifies the role of multiple hydrogen bonds in stabilizing a 2D supramolecular architecture leading to a large enhancement of molecular nonlinearity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA