Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(31): 14468-14481, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39030661

RESUMEN

The electronic structure and reactivity of tetra-coordinated nonheme iron(IV)-oxo complexes have remained unexplored for years. The recent synthesis of a closed-shell iron(IV)-oxo complex [(quinisox)FeIV(O)]+ (1) has set up a platform to understand how such complexes compare with the celebrated open-shell iron-oxo chemistry. Herein, using density functional theory and ab initio calculations, we present an in-depth electronic structure investigation of the C═C epoxidation [oxygen atom transfer (OAT)] and C-H hydroxylation [hydrogen atom transfer (HAT)] reactivity of 1. Using a solvent-coordinated geometry of 1 (1') and other potential tetra-coordinated iron(IV)-oxo complexes bearing rigid ligands (2 and 3), we established the geometric origin of spin-state energetics and reactivity of 1. Complex 1 featuring a strong Fe-O bond exhibits OAT and HAT reactivity in its quintet state. The lowest quintet OAT pathway has a lower barrier by ∼4 kcal/mol than the quintet HAT pathway, corroborating the experimentally observed gas-phase OAT reactivity preference. A conventional HAT reactivity preference for 2 and a comparable OAT and HAT reactivity for 3 are observed. This further supports the geometry-driven reactivity preference for 1. Noncovalent interaction analyses reveal a pronounced π-π interaction between the substrate and ligand in the OAT transition state, rationalizing the origin of the observed reactivity preference for 1.

2.
Dalton Trans ; 52(35): 12517-12525, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37606083

RESUMEN

A base-trapped borylene species featuring a cyclic-(alkyl)(amino)carbene (cAAC) has shown unique bonding interactions with dinitrogen, thereby, opening a new avenue for N2 activation by main-group compounds. The detailed electronic structure and qualitative bonding picture between cAAC-trapped borylene and N2 remain to be fully understood. This work presents a multiconfigurational complete active space self-consistent field (CASSCF)-based electronic structure investigation on the N2-bound cAAC-borylene species (1) isolated by Braunschweig et al. Specifically, the synergistic bonding between the borylene units and N2 involving the donation from the N-N σ to the unoccupied orbital of borylene and back-donation from the occupied orbital of borylene to the N-N π* has been unequivocally established using CASSCF-derived natural orbitals and electronic configuration. Bonding interactions between the HOMO of the borylene units and the N-N π* (HOMOcAAC-B + π*NN) and the LUMO of the borylene units and the N-N σ (LUMOcAAC-B + σNN) in 1 were apparent through the CASSCF-derived natural orbitals. The unique bonding of the B-N-N-B core in 1 and the resulting geometry have also been compared with the M-N-N-M core of a prototypical transition metal(M)-N2 complex. Finally, the change in the electronic structure and geometry of the N2-bound borylene species 1 on two-electron reduction has been investigated in the context of N2 activation.

3.
Chemistry ; 29(63): e202301984, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37578813

RESUMEN

Bimetallic end-on µ2 -η1 :η1 -N2 bridging dinitrogen complexes have served as the platform for photochemical N2 activation, mainly for the N-N cleavage. However, the alternate N-N π-photoactivation route has remained largely unexplored. This study strengthens the notion of weakening the N-N bond through the population of π* orbital upon electronic excitation from the ground to the first excited state using four prototypical complexes based on Fe (1), Mo (2), and Ru (3,4). The complexes 1-4 possess characteristic N-N π* based LUMO (π*-π*-π*) centered on their M-N-N-M core, which was earlier postulated to play a central role in the N2 photoactivation. Vertical electronic excitation of the highest oscillator strength involves transitions to the N-N π*-based acceptor orbital (π*-π*-π*) in complexes 1-4. This induces geometry relaxation of the first excited metal-to-nitrogen (π*) charge transfer (1 MNCT) state leading to a "zigzag" M-N-N-M core in the equilibrium structure. Obtaining the equilibrium geometry in the first excited state with the full-sized complexes widens the scope of N-N π-photoactivation with µ2 -η1 :η1 -N2 bridging dinitrogen complexes. Promisingly, the elongated N-N bond and bent ∠MNN angle in the photoexcited S1 state of 1-4 resemble their radical- and di-anion forms, which lead toward thermodynamically feasible N-N protonation in the S1 excited state.

4.
Inorg Chem ; 61(39): 15699-15710, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36123194

RESUMEN

As the postsynthesis-processed metal-organic material-based catalysts for energy applications add additional cost to the whole process, the importance of developing synthesized usable pristine catalysts is quite evident. The present work reports a new Cu-based coordination polymer (Cu-CP) catalyst to be used in its pristine form for oxygen reduction reaction (ORR) application. The catalyst was characterized using single-crystal X-ray diffraction, field emission scanning electron microscopy, and X-ray photoemission spectroscopy. The Cu-CP exhibits admirable electrocatalytic ORR activity with an onset potential of 0.84 V versus RHE and a half wave potential of 0.69 V versus RHE. As revealed by the density functional theory-based computational mechanistic investigation of the electrocatalytic ORR process, the electrochemically reduced Cu(I) center binds to the molecular O2 through an exergonic process (ΔG = -6.8 kcal/mol) and generates the Cu(II)-O2•- superoxo intermediate. Such superoxo intermediates are frequently encountered in the catalytic cycle of the Cu-containing metalloenzymes in their O2 reduction reaction. This intermediate undergoes coupled proton and electron transfer processes to give OH- in an alkaline medium involving H2O2 as the intermediate. The electrocatalytic performance of Cu-CP remained stable even up to 3000 cycles. Overall, the newly developed Cu-CP-based electrocatalyst holds promising potential for efficient biomimetic ORR reactivity, which opens new possibilities toward the development of robust coordination polymer-based electrocatalysts.


Asunto(s)
Metaloproteínas , Polímeros , Biomimética , Peróxido de Hidrógeno , Metaloproteínas/metabolismo , Oxidación-Reducción , Oxígeno/química , Polímeros/metabolismo , Protones
5.
Chemosphere ; 308(Pt 1): 136212, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36041524

RESUMEN

Two-dimensional (2D) materials have fascinated the researchers to exploit their properties including large surface area, ability to act as a support and to form face-to-face interfacial contact with other 2D materials for fabricating efficient photocatalytic materials. In this work, Bi2WO6, TiO2 and Ti3C2 nanosheets have been used synthesizing different series of binary Bi2WO6-TiO2 and ternary Bi2WO6-TiO2-Ti3C2 2D nanocomposites by an electrostatic self-assembly synthesis route. The as-prepared pristine materials and binary and ternary nanocomposites were characterized by different structural, morphological and compositional characterization techniques to confirm their successful synthesis and 2D morphology. It was found that the optimized Bi2WO6-TiO2 (20 wt%) and Bi2WO6-TiO2 (20 wt%)-Ti3C2 (5 wt%) nanocomposites showed 97.0% and 98.5% degradation of methyl green in 80 min and 40 min, respectively, which was higher than their pristine counterparts. The enhanced activity was credited to the large surface area offered by 2D nanocomposites, pollutant adsorption and enhanced photogenerated charge separation and transfer facilitated by S-scheme mechanism and face-to-face interfacial contact of different components of these nanocomposites. This work delivers an example of highly efficient 2D nanocomposites and discusses the role of Ti3C2 as an electron acceptor in S-scheme photocatalytic system.


Asunto(s)
Contaminantes Ambientales , Nanocompuestos , Verde de Metilo , Nanocompuestos/química , Luz Solar , Titanio/química
6.
Inorg Chem ; 61(7): 3152-3165, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35119860

RESUMEN

Two molecular copper(II) complexes, (NMe4)2[CuII(L1)] (1) and (NMe4)2[CuII(L2)] (2), ligated by a N2O2 donor set of ligands [L1 = N,N'-(1,2-phenylene)bis(2-hydroxy-2-methylpropanamide), and L2 = N,N'-(4,5-dimethyl-1,2-phenylene)bis(2-hydroxy-2-methylpropanamide)] have been synthesized and thoroughly characterized. An electrochemical study of 1 in a carbonate buffer at pH 9.2 revealed a reversible copper-centered redox couple at 0.51 V, followed by two ligand-based oxidation events at 1.02 and 1.25 V, and catalytic water oxidation at an onset potential of 1.28 V (overpotential of 580 mV). The electron-rich nature of the ligand likely supports access to high-valent copper species on the CV time scale. The results of the theoretical electronic structure investigation were quite consistent with the observed stepwise ligand-centered oxidation process. A constant potential electrolysis experiment with 1 reveals a catalytic current density of >2.4 mA cm-2 for 3 h. A one-electron-oxidized species of 1, (NMe4)[CuIII(L1)] (3), was isolated and characterized. Complex 2, on the contrary, revealed copper and ligand oxidation peaks at 0.505, 0.90, and 1.06 V, followed by an onset water oxidation (WO) at 1.26 V (overpotential of 560 mV). The findings show that the ligand-based oxidation reactions strongly depend upon the ligand's electronic substitution; however, such effects on the copper-centered redox couple and catalytic WO are minimal. The energetically favorable mechanism has been established through the theoretical calculation of stepwise reaction energies, which nicely explains the experimentally observed electron transfer events. Furthermore, as revealed by the theoretical calculations, the O-O bond formation process occurs through a water nucleophilic attack mechanism with an easily accessible reaction barrier. This study demonstrates the importance of redox-active ligands in the development of molecular late-transition-metal electrocatalysts for WO reactions.

7.
Mater Sci Eng C Mater Biol Appl ; 102: 730-742, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31147045

RESUMEN

Among shape memory alloys, nitinol alloy is biocompatible in nature and thus widely used in bone tissue engineering, stents, dental and orthopedic implants. To improve mechanical properties and extend its application window, in this paper, the Ni50.5Ti49.5 (nitinol) sheets are processed by constrained groove pressing (CGP) process, which is one of the effective severe plastic deformation (SPD) techniques for refining microstructure and enhancing mechanical properties in sheet metals. The microstructure and X-ray diffraction studies of CGPed sheets show uniform grain refinement and increase in martensitic variant. Based on tensile and micro-hardness tests on water quenched (WQ) and CGPed nitinol alloy, the results show about up to 2.5 times increment in ultimate tensile strength and yield strength, significant enhancement in micro-hardness and change in strain hardening behavior. For characterizing the strain hardening behavior, Holloman and Voce models have been determined to have strong correlation with the experimental data for WQ and CGPed nitinol alloy respectively. Thus, nitinol alloy after CGP exhibits grain refinement and microstructural evolution, showing an increase in stress induced martensite phase which indicates superior mechanical properties such as high strength, uniform deformation regime and microhardness. These enhancements will help in reduction of other supporting materials generally used for improving structural integrity and load bearing capacity in biomedical applications of nitinol alloy.


Asunto(s)
Aleaciones/química , Tecnología Biomédica/métodos , Ensayo de Materiales , Fenómenos Mecánicos , Elasticidad , Dureza , Estrés Mecánico , Resistencia a la Tracción , Agua/química , Difracción de Rayos X
8.
Med J Armed Forces India ; 56(3): 195-197, 2000 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28790705

RESUMEN

438 eyes of 365 patients undergoing Extra-Capsular Catarct Extraction were included in this study. Preoperatively the age of the patients, colour of the nucleus and grading on the Wilmer System were recorded. Postoperatively the diameter, width and hardness of the nucleus were recorded. Statistical analysis revealed a strong correlation between the age, depth of colour and grading on the Wilmer system and the size and hardness of the nucleus. The size and hardness of the nucleus can be predicted preoperatively by proper assessment of the age, colour, and grading on the Wilmer System. This would help the Surgeon in evolving a proper surgical plan for each patient and thus bringing down the complication rate and difficulties faced during the surgery especially during Phacoemulsification surgeries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA