Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Neuroscience Bulletin ; (6): 631-644, 2023.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-971579

RESUMEN

The conventional approach to investigating functional connectivity in the block-designed study usually concatenates task blocks or employs residuals of task activation. While providing many insights into brain functions, the block design adds more manipulation in functional network analysis that may reduce the purity of the blood oxygenation level-dependent signal. Recent studies utilized one single long run for task trials of the same condition, the so-called continuous design, to investigate functional connectivity based on task functional magnetic resonance imaging. Continuous brain activities associated with the single-task condition can be directly utilized for task-related functional connectivity assessment, which has been examined for working memory, sensory, motor, and semantic task experiments in previous research. But it remains unclear how the block and continuous design influence the assessment of task-related functional connectivity networks. This study aimed to disentangle the separable effects of block/continuous design and working memory load on task-related functional connectivity networks, by using repeated-measures analysis of variance. Across 50 young healthy adults, behavioral results of accuracy and reaction time showed a significant main effect of design as well as interaction between design and load. Imaging results revealed that the cingulo-opercular, fronto-parietal, and default model networks were associated with not only task activation, but significant main effects of design and load as well as their interaction on intra- and inter-network functional connectivity and global network topology. Moreover, a significant behavior-brain association was identified for the continuous design. This work has extended the evidence that continuous design can be used to study task-related functional connectivity and subtle brain-behavioral relationships.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-478677

RESUMEN

The recent Coronavirus Disease 2019 (COVID-19) has affected all aspects of life around the world. Neuroimaging evidence suggests the novel coronavirus can attack the central nervous system (CNS), causing cerebro-vascular abnormalities in the brain. This can lead to focal changes in cerebral blood flow and metabolic oxygen consumption rate in the brain. However, the extent and spatial locations of brain alterations in COVID-19 survivors are largely unknown. In this study, we have assessed brain functional connectivity (FC) using resting-state functional MRI (RS-fMRI) in 38 (25 males) COVID patients two weeks after hospital discharge, when PCR negative and 31 (24 males) healthy subjects. FC was estimated using independent component analysis (ICA) and dual regression. The COVID group demonstrated significantly enhanced FC in regions from the Occipital and Parietal Lobes, comparing to the HC group. On the other hand, the COVID group exhibited significantly reduced FC in several vermal layers of the cerebellum. More importantly, we noticed negative correlation of FC with self-reported fatigue within regions from the Parietal lobe, which are known to be associated with fatigue. Significance StatementEarly neuroimaging studies have mostly focused on structural MRI imaging to report brain abnormalities in acutely ill COVID-19 patients. It is not clear whether functional abnormalities co-exist with structural alterations in patients who have survived the infection and have been discharged from the hospital. A few recent studies have emerged which attempted to address the structural/functional alterations. However, further investigations across different sites are necessary for more conclusive inference. More importantly, fatigue is a highly prevalent symptom among COVID survivors, therefore, the relations of brain imaging abnormalities to fatigue should be investigated. In this study, we try to address these gaps, by collecting imaging data from COVID survivors, now PCR negative, and healthy subjects from a single site - the Indian Institute of Technology (IIT), Delhi, India. Furthermore, this is a continuation of an ongoing study. We have already submitted a manuscript showing structural abnormalities and gray matter volume correlates of self-reported fatigue among this group of COVID survivors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA