Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(11): 12709-12718, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33236879

RESUMEN

Liquid metals adhere to most surfaces despite their high surface tension due to the presence of a native gallium oxide layer. The ability to change the shape of functional fluids within a three-dimensional (3D) printed part with respect to time is a type of four-dimensional printing, yet surface adhesion limits the ability to pump liquid metals in and out of cavities and channels without leaving residue. Rough surfaces prevent adhesion, but most methods to roughen surfaces are difficult or impossible to apply on the interior of parts. Here, we show that silica particles suspended in an appropriate solvent can be injected inside cavities to coat the walls. This technique creates a transparent, nanoscopically rough (10-100 nm scale) coating that prevents adhesion of liquid metals on various 3D printed plastics and commercial polymers. Liquid metals roll and even bounce off treated surfaces (the latter occurs even when dropped from heights as high as 70 cm). Moreover, the coating can be removed locally by laser ablation to create selective wetting regions for metal patterning on the exterior of plastics. To demonstrate the utility of the coating, liquid metals were dynamically actuated inside a 3D printed channel or chamber without pinning the oxide, thereby demonstrating electrical circuits that can be reconfigured repeatably.

2.
ACS Appl Mater Interfaces ; 10(35): 29918-29924, 2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-30091895

RESUMEN

Soft and stretchable electronics are promising for a variety of applications such as wearable electronics, human-machine interfaces, and soft robotics. These devices, which are often encased in elastomeric materials, maintain or adjust their functionality during deformation, but can fail catastrophically if extended too far. Here, we report new functional composites in which stretchable electronic properties are coupled to molecular mechanochromic function, enabling at-a-glance visual cues that inform user control. These properties are realized by covalently incorporating a spiropyran mechanophore within poly(dimethylsiloxane) to indicate with a visible color change that a strain threshold has been reached. The resulting colorimetric elastomers can be molded and patterned so that, for example, the word "STOP" appears when a critical strain is reached, indicating to the user that further strain risks device failure. We also show that the strain at color onset can be controlled by layering silicones with different moduli into a composite. As a demonstration, we show how color onset can be tailored to indicate a when a specified frequency of a stretchable liquid metal antenna has been reached. The multiscale combination of mechanochromism and soft electronics offers a new avenue to empower user control of strain-dependent properties for future stretchable devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA