Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(35): e2114064119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994659

RESUMEN

Plants are resistant to most microbial species due to nonhost resistance (NHR), providing broad-spectrum and durable immunity. However, the molecular components contributing to NHR are poorly characterised. We address the question of whether failure of pathogen effectors to manipulate nonhost plants plays a critical role in NHR. RxLR (Arg-any amino acid-Leu-Arg) effectors from two oomycete pathogens, Phytophthora infestans and Hyaloperonospora arabidopsidis, enhanced pathogen infection when expressed in host plants (Nicotiana benthamiana and Arabidopsis, respectively) but the same effectors performed poorly in distantly related nonhost pathosystems. Putative target proteins in the host plant potato were identified for 64 P. infestans RxLR effectors using yeast 2-hybrid (Y2H) screens. Candidate orthologues of these target proteins in the distantly related non-host plant Arabidopsis were identified and screened using matrix Y2H for interaction with RxLR effectors from both P. infestans and H. arabidopsidis. Few P. infestans effector-target protein interactions were conserved from potato to candidate Arabidopsis target orthologues (cAtOrths). However, there was an enrichment of H. arabidopsidis RxLR effectors interacting with cAtOrths. We expressed the cAtOrth AtPUB33, which unlike its potato orthologue did not interact with P. infestans effector PiSFI3, in potato and Nicotiana benthamiana. Expression of AtPUB33 significantly reduced P. infestans colonization in both host plants. Our results provide evidence that failure of pathogen effectors to interact with and/or correctly manipulate target proteins in distantly related non-host plants contributes to NHR. Moreover, exploiting this breakdown in effector-nonhost target interaction, transferring effector target orthologues from non-host to host plants is a strategy to reduce disease.


Asunto(s)
Arabidopsis , Resistencia a la Enfermedad , Especificidad del Huésped , Nicotiana , Enfermedades de las Plantas , Proteínas de Plantas , Arabidopsis/metabolismo , Arabidopsis/parasitología , Oomicetos/metabolismo , Phytophthora infestans/metabolismo , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Proteínas de Plantas/metabolismo , Solanum tuberosum/parasitología , Nicotiana/metabolismo , Nicotiana/parasitología , Técnicas del Sistema de Dos Híbridos
2.
Plant J ; 107(5): 1363-1386, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34160110

RESUMEN

The photosynthetic capacity of mature leaves increases after several days' exposure to constant or intermittent episodes of high light (HL) and is manifested primarily as changes in chloroplast physiology. How this chloroplast-level acclimation to HL is initiated and controlled is unknown. From expanded Arabidopsis leaves, we determined HL-dependent changes in transcript abundance of 3844 genes in a 0-6 h time-series transcriptomics experiment. It was hypothesized that among such genes were those that contribute to the initiation of HL acclimation. By focusing on differentially expressed transcription (co-)factor genes and applying dynamic statistical modelling to the temporal transcriptomics data, a regulatory network of 47 predominantly photoreceptor-regulated transcription (co-)factor genes was inferred. The most connected gene in this network was B-BOX DOMAIN CONTAINING PROTEIN32 (BBX32). Plants overexpressing BBX32 were strongly impaired in acclimation to HL and displayed perturbed expression of photosynthesis-associated genes under LL and after exposure to HL. These observations led to demonstrating that as well as regulation of chloroplast-level acclimation by BBX32, CRYPTOCHROME1, LONG HYPOCOTYL5, CONSTITUTIVELY PHOTOMORPHOGENIC1 and SUPPRESSOR OF PHYA-105 are important. In addition, the BBX32-centric gene regulatory network provides a view of the transcriptional control of acclimation in mature leaves distinct from other photoreceptor-regulated processes, such as seedling photomorphogenesis.


Asunto(s)
Aclimatación/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Aclimatación/efectos de la radiación , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Teorema de Bayes , Proteínas Portadoras/genética , Cloroplastos/efectos de la radiación , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Luz , Fotosíntesis/efectos de la radiación , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación
3.
Elife ; 102021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33904405

RESUMEN

Genes involved in disease resistance are some of the fastest evolving and most diverse components of genomes. Large numbers of nucleotide-binding, leucine-rich repeat (NLR) genes are found in plant genomes and are required for disease resistance. However, NLRs can trigger autoimmunity, disrupt beneficial microbiota or reduce fitness. It is therefore crucial to understand how NLRs are controlled. Here, we show that the RNA-binding protein FPA mediates widespread premature cleavage and polyadenylation of NLR transcripts, thereby controlling their functional expression and impacting immunity. Using long-read Nanopore direct RNA sequencing, we resolved the complexity of NLR transcript processing and gene annotation. Our results uncover a co-transcriptional layer of NLR control with implications for understanding the regulatory and evolutionary dynamics of NLRs in the immune responses of plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas NLR/metabolismo , Proteínas de Unión al ARN/metabolismo , Terminación de la Transcripción Genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Genes de Plantas/fisiología , ARN Mensajero/metabolismo
5.
Nat Plants ; 6(10): 1275-1288, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33020609

RESUMEN

Polar growth requires the precise tuning of Rho GTPase signalling at distinct plasma membrane domains. The activity of Rho of plant (ROP) GTPases is regulated by the opposing action of guanine nucleotide-exchange factors (GEFs) and GTPase-activating proteins (GAPs). Whereas plant-specific ROPGEFs have been shown to be embedded in higher-level regulatory mechanisms involving membrane-bound receptor-like kinases, the regulation of GAPs has remained enigmatic. Here, we show that three Arabidopsis ARMADILLO REPEAT ONLY (ARO) proteins are essential for the stabilization of growth sites in root hair cells and trichomes. AROs interact with ROP1 enhancer GAPs (RENGAPs) and bind to the plasma membrane via a conserved polybasic region at the ARO amino terminus. The ectopic spreading of ROP2 in aro2/3/4 mutant root hair cells and the preferential interaction of AROs with active ROPs and anionic phospholipids suggests that AROs recruit RENGAPs into complexes with ROPs to confine ROP signalling to distinct membrane regions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas del Dominio Armadillo/metabolismo , Proteínas de Unión al GTP/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo , Arabidopsis/citología , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Polaridad Celular , Proteínas de Unión al ADN/metabolismo , Evolución Molecular , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Tricomas/citología , Tricomas/metabolismo
6.
PLoS Pathog ; 16(8): e1008835, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32785253

RESUMEN

Hyaloperonospora arabidopsidis (Hpa) is an oomycete pathogen causing Arabidopsis downy mildew. Effector proteins secreted from the pathogen into the plant play key roles in promoting infection by suppressing plant immunity and manipulating the host to the pathogen's advantage. One class of oomycete effectors share a conserved 'RxLR' motif critical for their translocation into the host cell. Here we characterize the interaction between an RxLR effector, HaRxL21 (RxL21), and the Arabidopsis transcriptional co-repressor Topless (TPL). We establish that RxL21 and TPL interact via an EAR motif at the C-terminus of the effector, mimicking the host plant mechanism for recruiting TPL to sites of transcriptional repression. We show that this motif, and hence interaction with TPL, is necessary for the virulence function of the effector. Furthermore, we provide evidence that RxL21 uses the interaction with TPL, and its close relative TPL-related 1, to repress plant immunity and enhance host susceptibility to both biotrophic and necrotrophic pathogens.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Interacciones Huésped-Patógeno/inmunología , Oomicetos/fisiología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/inmunología , Factores de Virulencia/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/microbiología , Virulencia , Factores de Virulencia/genética
8.
Plant Physiol ; 173(1): 907-917, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27872245

RESUMEN

Gibberellic acid (GA)-mediated cell expansion initiates the seed-to-seedling transition in plants and is repressed by DELLA proteins. Using digital single-cell analysis, we identified a cellular subdomain within the midhypocotyl, whose expansion drives the final step of this developmental transition under optimal conditions. Using network inference, the transcription factor ATHB5 was identified as a genetic factor whose localized expression promotes GA-mediated expansion specifically within these cells. Both this protein and its putative growth-promoting target EXPANSIN3 are repressed by DELLA, and coregulated at single-cell resolution during seed germination. The cellular domains of hormone sensitivity were explored within the Arabidopsis (Arabidopsis thaliana) embryo by putting seeds under GA-limiting conditions and quantifying cellular growth responses. The middle and upper hypocotyl have a greater requirement for GA to promote cell expansion than the lower embryo axis. Under these conditions, germination was still completed following enhanced growth within the radicle and lower axis. Under GA-limiting conditions, the athb5 mutant did not show a phenotype at the level of seed germination, but it did at a cellular level with reduced cell expansion in the hypocotyl relative to the wild type. These data reveal that the spatiotemporal cell expansion events driving this transition are not determinate, and the conditional use of GA-ATHB5-mediated hypocotyl growth under optimal conditions may be used to optionally support rapid seedling growth. This study demonstrates that multiple genetic and spatiotemporal cell expansion mechanisms underlie the seed to seedling transition in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Giberelinas/metabolismo , Proteínas de Homeodominio/metabolismo , Hipocótilo/citología , Factores de Transcripción/metabolismo , Anisotropía , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Proteínas de Homeodominio/genética , Hipocótilo/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Plantones/crecimiento & desarrollo , Semillas/citología , Semillas/fisiología , Análisis de la Célula Individual/métodos , Factores de Transcripción/genética
9.
Plant Cell ; 28(2): 345-66, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26842464

RESUMEN

In Arabidopsis thaliana, changes in metabolism and gene expression drive increased drought tolerance and initiate diverse drought avoidance and escape responses. To address regulatory processes that link these responses, we set out to identify genes that govern early responses to drought. To do this, a high-resolution time series transcriptomics data set was produced, coupled with detailed physiological and metabolic analyses of plants subjected to a slow transition from well-watered to drought conditions. A total of 1815 drought-responsive differentially expressed genes were identified. The early changes in gene expression coincided with a drop in carbon assimilation, and only in the late stages with an increase in foliar abscisic acid content. To identify gene regulatory networks (GRNs) mediating the transition between the early and late stages of drought, we used Bayesian network modeling of differentially expressed transcription factor (TF) genes. This approach identified AGAMOUS-LIKE22 (AGL22), as key hub gene in a TF GRN. It has previously been shown that AGL22 is involved in the transition from vegetative state to flowering but here we show that AGL22 expression influences steady state photosynthetic rates and lifetime water use. This suggests that AGL22 uniquely regulates a transcriptional network during drought stress, linking changes in primary metabolism and the initiation of stress responses.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Teorema de Bayes , Análisis por Conglomerados , Sequías , Redes Reguladoras de Genes , Mutación , Fenotipo , Fotosíntesis/fisiología , Estrés Fisiológico , Factores de Transcripción/genética
10.
Plant Cell ; 27(11): 3038-64, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26566919

RESUMEN

Transcriptional reprogramming is integral to effective plant defense. Pathogen effectors act transcriptionally and posttranscriptionally to suppress defense responses. A major challenge to understanding disease and defense responses is discriminating between transcriptional reprogramming associated with microbial-associated molecular pattern (MAMP)-triggered immunity (MTI) and that orchestrated by effectors. A high-resolution time course of genome-wide expression changes following challenge with Pseudomonas syringae pv tomato DC3000 and the nonpathogenic mutant strain DC3000hrpA- allowed us to establish causal links between the activities of pathogen effectors and suppression of MTI and infer with high confidence a range of processes specifically targeted by effectors. Analysis of this information-rich data set with a range of computational tools provided insights into the earliest transcriptional events triggered by effector delivery, regulatory mechanisms recruited, and biological processes targeted. We show that the majority of genes contributing to disease or defense are induced within 6 h postinfection, significantly before pathogen multiplication. Suppression of chloroplast-associated genes is a rapid MAMP-triggered defense response, and suppression of genes involved in chromatin assembly and induction of ubiquitin-related genes coincide with pathogen-induced abscisic acid accumulation. Specific combinations of promoter motifs are engaged in fine-tuning the MTI response and active transcriptional suppression at specific promoter configurations by P. syringae.


Asunto(s)
Arabidopsis/inmunología , Terapia de Inmunosupresión , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Inmunidad de la Planta/genética , Hojas de la Planta/inmunología , Pseudomonas syringae/fisiología , Transcripción Genética , Arabidopsis/genética , Arabidopsis/microbiología , Secuencia de Bases , Cromatina/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Redes Reguladoras de Genes , Genes de Plantas , Datos de Secuencia Molecular , Motivos de Nucleótidos/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Regiones Promotoras Genéticas/genética , Pseudomonas syringae/crecimiento & desarrollo , Factores de Transcripción/metabolismo
11.
Front Plant Sci ; 6: 527, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26217372

RESUMEN

Changes in gene expression form a crucial part of the plant response to infection. In the last decade, whole-leaf expression profiling has played a valuable role in identifying genes and processes that contribute to the interactions between the model plant Arabidopsis thaliana and a diverse range of pathogens. However, with some pathogens such as downy mildew caused by the biotrophic oomycete pathogen Hyaloperonospora arabidopsidis (Hpa), whole-leaf profiling may fail to capture the complete Arabidopsis response encompassing responses of non-infected as well as infected cells within the leaf. Highly localized expression changes that occur in infected cells may be diluted by the comparative abundance of non-infected cells. Furthermore, local and systemic Hpa responses of a differing nature may become conflated. To address this we applied the technique of Fluorescence Activated Cell Sorting (FACS), typically used for analyzing plant abiotic responses, to the study of plant-pathogen interactions. We isolated haustoriated (Hpa-proximal) and non-haustoriated (Hpa-distal) cells from infected seedling samples using FACS, and measured global gene expression. When compared with an uninfected control, 278 transcripts were identified as significantly differentially expressed, the vast majority of which were differentially expressed specifically in Hpa-proximal cells. By comparing our data to previous, whole organ studies, we discovered many highly locally regulated genes that can be implicated as novel in the Hpa response, and that were uncovered for the first time using our sensitive FACS technique.

12.
Front Plant Sci ; 5: 671, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25520730

RESUMEN

One of the great challenges for food security in the 21st century is to improve yield stability through the development of disease-resistant crops. Crop research is often hindered by the lack of molecular tools, growth logistics, generation time and detailed genetic annotations, hence the power of model plant species. Our knowledge of plant immunity today has been largely shaped by the use of models, specifically through the use of mutants. We examine the importance of Arabidopsis and tomato as models in the study of plant immunity and how they help us in revealing a detailed and deep understanding of the various layers contributing to the immune system. Here we describe examples of how knowledge from models can be transferred to economically important crops resulting in new tools to enable and accelerate classical plant breeding. We will also discuss how models, and specifically transcriptomics and effectoromics approaches, have contributed to the identification of core components of the defense response which will be key to future engineering of durable and sustainable disease resistance in plants.

13.
Methods Mol Biol ; 1127: 145-58, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24643559

RESUMEN

There is a considerable interest in determining the role of individual oomycete effectors in promoting disease. Widely used strategies are based on manipulating effector-expression levels in the pathogen and by over-expressing particular effectors in the host by genetic transformation. In the case of the oomycete, Hyaloperonospora arabidopsidis (Hpa) genetic manipulation is not yet possible, so over-expression of predicted effectors in stably transformed Arabidopsis lines is used to investigate their capability for promoting virulence. Here, we describe a technique for quantifying pathogen growth based on the counting of asexual reproductive structures called sporangiophores in the compatible interaction between the Hpa isolate Noks1 and the Col-0 Arabidopsis accession.


Asunto(s)
Arabidopsis/microbiología , Bioensayo/métodos , Oomicetos/aislamiento & purificación , Células Cultivadas , Plantas Modificadas Genéticamente , Esporas/fisiología
14.
Methods Mol Biol ; 1127: 195-211, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24643563

RESUMEN

Plant pathogens are responsible for enormous damage in natural and cultured ecosystems. One strategy most pathogenic organisms follow is the secretion of effector proteins that manipulate the host immune system to suppress defense responses. There is considerable interest in finding host targets of pathogen effectors as this helps to shape our understanding of how those proteins work in planta. The presented protocol describes a protein complex immunoprecipitation method aimed at verifying protein-protein interactions derived from protein complementation assays like Yeast-two-Hybrid.


Asunto(s)
Interacciones Huésped-Patógeno , Inmunoprecipitación/métodos , Proteínas de Plantas/metabolismo , Agrobacterium/citología , Agrobacterium/metabolismo , Cartilla de ADN/metabolismo , Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Factores de Tiempo , Nicotiana/citología , Nicotiana/metabolismo , Transformación Genética
15.
Mol Cell ; 53(3): 369-79, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24462115

RESUMEN

Nitric oxide (NO) is an important signaling compound in prokaryotes and eukaryotes. In plants, NO regulates critical developmental transitions and stress responses. Here, we identify a mechanism for NO sensing that coordinates responses throughout development based on targeted degradation of plant-specific transcriptional regulators, the group VII ethylene response factors (ERFs). We show that the N-end rule pathway of targeted proteolysis targets these proteins for destruction in the presence of NO, and we establish them as critical regulators of diverse NO-regulated processes, including seed germination, stomatal closure, and hypocotyl elongation. Furthermore, we define the molecular mechanism for NO control of germination and crosstalk with abscisic acid (ABA) signaling through ERF-regulated expression of ABSCISIC ACID INSENSITIVE5 (ABI5). Our work demonstrates how NO sensing is integrated across multiple physiological processes by direct modulation of transcription factor stability and identifies group VII ERFs as central hubs for the perception of gaseous signals in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Óxido Nítrico/metabolismo , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación/efectos de los fármacos , Germinación/fisiología , Óxido Nítrico/farmacología , Oxígeno/farmacología , Estomas de Plantas/efectos de los fármacos , Proteolisis , Transducción de Señal , Factores de Transcripción/efectos de los fármacos
16.
Bioinformatics ; 30(7): 962-70, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24351708

RESUMEN

MOTIVATION: Identification of modules of co-regulated genes is a crucial first step towards dissecting the regulatory circuitry underlying biological processes. Co-regulated genes are likely to reveal themselves by showing tight co-expression, e.g. high correlation of expression profiles across multiple time series datasets. However, numbers of up- or downregulated genes are often large, making it difficult to discriminate between dependent co-expression resulting from co-regulation and independent co-expression. Furthermore, modules of co-regulated genes may only show tight co-expression across a subset of the time series, i.e. show condition-dependent regulation. RESULTS: Wigwams is a simple and efficient method to identify gene modules showing evidence for co-regulation in multiple time series of gene expression data. Wigwams analyzes similarities of gene expression patterns within each time series (condition) and directly tests the dependence or independence of these across different conditions. The expression pattern of each gene in each subset of conditions is tested statistically as a potential signature of a condition-dependent regulatory mechanism regulating multiple genes. Wigwams does not require particular time points and can process datasets that are on different time scales. Differential expression relative to control conditions can be taken into account. The output is succinct and non-redundant, enabling gene network reconstruction to be focused on those gene modules and combinations of conditions that show evidence for shared regulatory mechanisms. Wigwams was run using six Arabidopsis time series expression datasets, producing a set of biologically significant modules spanning different combinations of conditions. AVAILABILITY AND IMPLEMENTATION: A Matlab implementation of Wigwams, complete with graphical user interfaces and documentation, is available at: warwick.ac.uk/wigwams. .


Asunto(s)
Perfilación de la Expresión Génica/métodos , Expresión Génica , Programas Informáticos , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes
17.
New Phytol ; 201(4): 1358-1370, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24329768

RESUMEN

• Pseudomonas syringae type III effectors are known to suppress plant immunity to promote bacterial virulence. However, the activities and targets of these effectors are not well understood. • We used genetic, molecular, and cell biology methods to characterize the activities, localization, and target of the HopD1 type III effector in Arabidopsis. • HopD1 contributes to P. syringae virulence in Arabidopsis and reduces effector-triggered immunity (ETI) responses but not pathogen-associated molecular pattern-triggered immunity (PTI) responses. Plants expressing HopD1 supported increased growth of ETI-inducing P. syringae strains compared with wild-type Arabidopsis. We show that HopD1 interacts with the membrane-tethered Arabidopsis transcription factor NTL9 and demonstrate that this interaction occurs at the endoplasmic reticulum (ER). A P. syringae hopD1 mutant and ETI-inducing P. syringae strains exhibited enhanced growth on Arabidopsis ntl9 mutant plants. Conversely, growth of P. syringae strains was reduced in plants expressing a constitutively active NTL9 derivative, indicating that NTL9 is a positive regulator of plant immunity. Furthermore, HopD1 inhibited the induction of NTL9-regulated genes during ETI but not PTI. • HopD1 contributes to P. syringae virulence in part by targeting NTL9, resulting in the suppression of ETI responses but not PTI responses and the promotion of plant pathogenicity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos , Retículo Endoplásmico/metabolismo , Inmunidad de la Planta , Pseudomonas syringae/patogenicidad , Factores de Transcripción/metabolismo , Arabidopsis/genética , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glucanos/metabolismo , Inmunidad Innata , Unión Proteica , Transporte de Proteínas , Pseudomonas syringae/crecimiento & desarrollo , Receptores de Reconocimiento de Patrones/metabolismo , Estallido Respiratorio , Virulencia
18.
PLoS Pathog ; 9(10): e1003670, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24130484

RESUMEN

The potato late blight pathogen Phytophthora infestans secretes an array of effector proteins thought to act in its hosts by disarming defences and promoting pathogen colonisation. However, little is known about the host targets of these effectors and how they are manipulated by the pathogen. This work describes the identification of two putative membrane-associated NAC transcription factors (TF) as the host targets of the RxLR effector PITG_03192 (Pi03192). The effector interacts with NAC Targeted by Phytophthora (NTP) 1 and NTP2 at the endoplasmic reticulum (ER) membrane, where these proteins are localised. Transcripts of NTP1 and NTP2 rapidly accumulate following treatment with culture filtrate (CF) from in vitro grown P. infestans, which acts as a mixture of Phytophthora PAMPs and elicitors, but significantly decrease during P. infestans infection, indicating that pathogen activity may prevent their up-regulation. Silencing of NTP1 or NTP2 in the model host plant Nicotiana benthamiana increases susceptibility to P. infestans, whereas silencing of Pi03192 in P. infestans reduces pathogenicity. Transient expression of Pi03192 in planta restores pathogenicity of the Pi03192-silenced line. Moreover, colonisation by the Pi03192-silenced line is significantly enhanced on N. benthamiana plants in which either NTP1 or NTP2 have been silenced. StNTP1 and StNTP2 proteins are released from the ER membrane following treatment with P. infestans CF and accumulate in the nucleus, after which they are rapidly turned over by the 26S proteasome. In contrast, treatment with the defined PAMP flg22 fails to up-regulate NTP1 and NTP2, or promote re-localisation of their protein products to the nucleus, indicating that these events follow perception of a component of CF that appears to be independent of the FLS2/flg22 pathway. Importantly, Pi03192 prevents CF-triggered re-localisation of StNTP1 and StNTP2 from the ER into the nucleus, revealing a novel effector mode-of-action to promote disease progression.


Asunto(s)
Núcleo Celular/metabolismo , Retículo Endoplásmico/metabolismo , Nicotiana/metabolismo , Phytophthora infestans/metabolismo , Enfermedades de las Plantas , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular/genética , Núcleo Celular/genética , Retículo Endoplásmico/genética , Silenciador del Gen , Phytophthora infestans/genética , Proteínas de Plantas/genética , Nicotiana/genética , Nicotiana/microbiología , Factores de Transcripción/genética
19.
J Exp Bot ; 64(11): 3467-81, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23828547

RESUMEN

Heat-stressed crops suffer dehydration, depressed growth, and a consequent decline in water productivity, which is the yield of harvestable product as a function of lifetime water consumption and is a trait associated with plant growth and development. Heat shock transcription factor (HSF) genes have been implicated not only in thermotolerance but also in plant growth and development, and therefore could influence water productivity. Here it is demonstrated that Arabidopsis thaliana plants with increased HSFA1b expression showed increased water productivity and harvest index under water-replete and water-limiting conditions. In non-stressed HSFA1b-overexpressing (HSFA1bOx) plants, 509 genes showed altered expression, and these genes were not over-represented for development-associated genes but were for response to biotic stress. This confirmed an additional role for HSFA1b in maintaining basal disease resistance, which was stress hormone independent but involved H2O2 signalling. Fifty-five of the 509 genes harbour a variant of the heat shock element (HSE) in their promoters, here named HSE1b. Chromatin immunoprecipitation-PCR confirmed binding of HSFA1b to HSE1b in vivo, including in seven transcription factor genes. One of these is MULTIPROTEIN BRIDGING FACTOR1c (MBF1c). Plants overexpressing MBF1c showed enhanced basal resistance but not water productivity, thus partially phenocopying HSFA1bOx plants. A comparison of genes responsive to HSFA1b and MBF1c overexpression revealed a common group, none of which harbours a HSE1b motif. From this example, it is suggested that HSFA1b directly regulates 55 HSE1b-containing genes, which control the remaining 454 genes, collectively accounting for the stress defence and developmental phenotypes of HSFA1bOx.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Sequías , Factores de Transcripción/metabolismo , Agua/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Resistencia a la Enfermedad/genética , Factores de Transcripción del Choque Térmico , Calor , Pseudomonas syringae/patogenicidad , Factores de Transcripción/genética
20.
Bioinformatics ; 29(13): 1696-7, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23681125

RESUMEN

SUMMARY: Genome-wide expression analysis can result in large numbers of clusters of co-expressed genes. Although there are tools for ab initio discovery of transcription factor-binding sites, most do not provide a quick and easy way to study large numbers of clusters. To address this, we introduce a web tool called MEME-LaB. The tool wraps MEME (an ab initio motif finder), providing an interface for users to input multiple gene clusters, retrieve promoter sequences, run motif finding and then easily browse and condense the results, facilitating better interpretation of the results from large-scale datasets. AVAILABILITY: MEME-LaB is freely accessible at: http://wsbc.warwick.ac.uk/wsbcToolsWebpage/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Regiones Promotoras Genéticas , Programas Informáticos , Factores de Transcripción/metabolismo , Algoritmos , Sitios de Unión , Análisis por Conglomerados , Internet , Motivos de Nucleótidos , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA