Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cell Commun Signal ; 22(1): 145, 2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388432

RESUMEN

BACKGROUND: ZEB1, a core transcription factor involved in epithelial-mesenchymal transition (EMT), is associated with aggressive cancer cell behavior, treatment resistance, and poor prognosis across various tumor types. Similarly, the expression and activity of CD73, an ectonucleotidase implicated in adenosine generation, is an important marker of tumor malignancy. Growing evidence suggests that EMT and the adenosinergic pathway are intricately linked and play a pivotal role in cancer development. Therefore, this study focuses on exploring the correlations between CD73 and ZEB1, considering their impact on tumor progression. METHODS: We employed CRISPR/Cas9 technology to silence CD73 expression in cell lines derived from papillary thyroid carcinoma. These same cells underwent lentiviral transduction of a reporter of ZEB1 non-coding RNA regulation. We conducted studies on cell migration using scratch assays and analyses of cellular speed and polarity. Additionally, we examined ZEB1 reporter expression through flow cytometry and immunocytochemistry, complemented by Western blot analysis for protein quantification. For further insights, we applied gene signatures representing different EMT states in an RNA-seq expression analysis of papillary thyroid carcinoma samples from The Cancer Genome Atlas. RESULTS: Silencing CD73 expression led to a reduction in ZEB1 non-coding RNA regulation reporter expression in a papillary thyroid carcinoma-derived cell line. Additionally, it also mitigated ZEB1 protein expression. Moreover, the expression of CD73 and ZEB1 was correlated with alterations in cell morphology characteristics crucial for cell migration, promoting an increase in cell polarity index and cell migration speed. RNA-seq analysis revealed higher expression of NT5E (CD73) in samples with BRAF mutations, accompanied by a prevalence of partial-EMT/hybrid state signature expression. CONCLUSIONS: Collectively, our findings suggest an association between CD73 expression and/or activity and the post-transcriptional regulation of ZEB1 by non-coding RNA, indicating a reduction in its absence. Further investigations are warranted to elucidate the relationship between CD73 and ZEB1, with the potential for targeting them as therapeutic alternatives for cancer treatment in the near future.


Asunto(s)
Neoplasias de la Tiroides , Factores de Transcripción , Humanos , Cáncer Papilar Tiroideo , Línea Celular Tumoral , Factores de Transcripción/genética , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , ARN no Traducido , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
2.
Mol Cell Endocrinol ; 570: 111915, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37059175

RESUMEN

The ectoenzyme CD73, encoded by the NT5E gene, has emerged as a potential prognostic and therapeutic marker for papillary thyroid carcinoma (PTC), which has increased in incidence in recent decades. Here, from The Cancer Genome Atlas Thyroid Cancer (TCGA-THCA) database, we extracted and combined clinical features, levels of NT5E mRNA, and DNA methylation of PTC samples and performed multivariate and random forest analyses to evaluate the prognostic relevance and the potential of discriminating between adjacent non-malignant and thyroid tumor samples. As a result, we revealed that lower levels of methylation at the cg23172664 site were independently associated with BRAF-like phenotype (p = 0.002), age over 55 years (p = 0.012), presence of capsule invasion (p = 0.007) and presence of positive lymph node metastasis (LNM) (p = 0.04). The methylation levels of cg27297263 and cg23172664 sites showed significant and inversely correlations with levels of NT5E mRNA expression (r = -0.528 and r = -0.660, respectively), and their combination was able to discriminate between adjacent non-malignant and tumor samples with a precision of 96%-97% and 84%-85%, respectively. These data suggest that combining cg23172664 and cg27297263 sites may bring new insights to reveal new subsets of patients with papillary thyroid carcinoma.


Asunto(s)
Carcinoma Papilar , Neoplasias de la Tiroides , Humanos , Cáncer Papilar Tiroideo/genética , Metilación de ADN/genética , Carcinoma Papilar/genética , Carcinoma Papilar/patología , Medicina de Precisión , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , 5'-Nucleotidasa/genética , Proteínas Ligadas a GPI/genética
4.
J Mol Med (Berl) ; 100(4): 569-584, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35091759

RESUMEN

For over a year, the coronavirus disease 2019 has been affecting the world population by causing severe tissue injuries and death in infected people. Adenosine triphosphate (ATP) and the nicotinamide adenine dinucleotide (NAD +) are two molecules that are released into the extracellular microenvironment after direct virus infection or cell death caused by hyper inflammation and coagulopathy. Also, these molecules are well known to participate in multiple pathways and have a pivotal role in the purinergic signaling pathway. Thus, using public datasets available on the Gene Expression Omnibus (GEO), we analyzed raw proteomics data acquired using mass spectrometry (the gold standard method) and raw genomics data from COVID-19 patient samples obtained by microarray. The data was analyzed using bioinformatics and statistical methods according to our objectives. Here, we compared the purinergic profile of the total leukocyte population and evaluated the levels of these soluble biomolecules in the blood, and their correlation with coagulation components in COVID-19 patients, in comparison to healthy people or non-COVID-19 patients. The blood metabolite analysis showed a stage-dependent inosine increase in COVID-19 patients, while the nucleotides ATP and ADP had positive correlations with fibrinogen and other coagulation proteins. Also, ATP, ADP, inosine, and hypoxanthine had positive and negative correlations with clinical features. Regarding leukocyte gene expression, COVID-19 patients showed an upregulation of the P2RX1, P2RX4, P2RX5, P2RX7, P2RY1, P2RY12, PANX1, ADORA2B, NLPR3, and F3 genes. Yet, the ectoenzymes of the canonical and non-canonical adenosinergic pathway (ENTPD1 and CD38) are upregulated, suggesting that adenosine is produced by both active adenosinergic pathways. Hence, approaches targeting these biomolecules or their specific purinoreceptors and ectoenzymes may attenuate the high inflammatory state and the coagulopathy seen in COVID-19 patients. KEY MESSAGES : Adenosinergic pathways are modulated on leukocytes from COVID-19 patients. Plasmatic inosine levels are increased in COVID-19 patients. ATP, ADP, AMP, hypoxanthine, and inosine are correlated with coagulation players. The nucleotides and nucleosides are correlated with patients' clinical features. The P2 receptors and ectoenzymes are correlated with Tissue factor in COVID-19.


Asunto(s)
COVID-19 , Adenosina/metabolismo , Adenosina Trifosfato/metabolismo , Conexinas , Humanos , Leucocitos/metabolismo , Proteínas del Tejido Nervioso , Transducción de Señal
5.
Stem Cell Rev Rep ; 18(4): 1495-1509, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34403074

RESUMEN

Many studies have shown that mesenchymal stromal cells (MSCs) and their secreted factors may modulate the biology of tumor cells. However, how these interactions happen in vivo remains unclear. In the present study, we investigated the effects of rat adipose-derived stromal cells (ADSCs) and their conditioned medium (ADSC-CM) in glioma tumor growth and malignancy in vivo. Our results showed that when we co-injected C6 cells plus ADSCs into the rat brains, the tumors generated were larger and the animals exhibited shorter survival, when compared with tumors of the animals that received only C6 cells or C6 cells pre-treated with ADSC-CM. We further showed that the animals that received C6 plus ADSC did not present enhanced expression of CD73 (a gene highly expressed in ADSCs), indicating that the tumor volume observed in these animals was not a mere consequence of the higher density of cells administered in this group. Finally, we showed that the animals that received C6 + ADSC presented tumors with larger necrosis areas and greater infiltration of immune cells. These results indicate that the immunoregulatory properties of ADSCs and its contribution to tumor stroma can support tumor growth leading to larger zones of necrosis, recruitment of immune cells, thus facilitating tumor progression. Our data provide new insights into the way by which ADSCs and tumor cells interact and highlight the importance of understanding the fate and roles of MSCs in tumor sites in vivo, as well as their intricate crosstalk with cancer cells.


Asunto(s)
Glioblastoma , Tejido Adiposo/metabolismo , Animales , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Glioblastoma/genética , Glioblastoma/terapia , Necrosis , Ratas , Células del Estroma/metabolismo
6.
Acta Myol ; 40(2): 93-100, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34355126

RESUMEN

Pathogenic germline variants in DMD gene, which encodes the well-known cytoskeletal protein named dystrophin, are associated with a wide range of dystrophinopathies disorders, such as Duchenne muscular dystrophy (DMD, severe form), Becker muscular dystrophy (BMD, mild form) and intermediate muscular dystrophy (IMD). Muscle biopsy, immunohistochemistry, molecular (multiplex ligation-dependent probe amplification (MLPA)/next-generation sequencing (NGS) and Sanger methods) and in silico analyses were performed in order to identify alterations in DMD gene and protein in a patient with a clinical manifestation and with high creatine kinase levels. Herein, we described a previously unreported intronic variant in DMD and reduced dystrophin staining in the muscle biopsy. This novel DMD variant allele, c.9649+4A>T that was located in a splice donor site within intron 66. Sanger sequencing analysis from maternal DNA showed the presence of both variant c.9649+4A>T and wild-type (WT) DMD alleles. Different computational tools suggested that this nucleotide change might affect splicing through a WT donor site disruption, occurring in an evolutionarily conserved region. Indeed, we observed that this novel variant, could explain the reduced dystrophin protein levels and discontinuous sarcolemmal staining in muscle biopsy, which suggests that c.9649+4A>T allele may be re-classified as pathogenic in the future. Our data show that the c.9649+4A>T intronic sequence variant in the DMD gene may be associated with an IMD phenotype and our findings reinforce the importance of a more precise diagnosis combining muscle biopsy, molecular techniques and comprehensive in silico approaches in the clinical cases with negative results for conventional genetic analysis.


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Distrofina/genética , Pruebas Genéticas , Humanos , Intrones/genética , Distrofia Muscular de Duchenne/genética , Mutación , Fenotipo
7.
Life Sci ; 282: 119816, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34273376

RESUMEN

BACKGROUND: Combined exercise training (CET) has been associated with positive responses in the clinical status of patients with heart failure (HF). Other nonpharmacological tools, such as amino acid supplementation, may further enhance its adaptation. The aim was to test whether CET associated with supplementing carnosine precursors could present better responses in the functional capacity and biochemical variables of rats with HF. METHODS: Twenty-one male Wistar rats were subjected to myocardial infarction and allocated to three groups: sedentary (SED, n = 7), CET supplemented with placebo (CETP, n = 7), and CET with HF supplemented with ß-alanine and L-histidine (CETS, n = 7). The trained animals were submitted to a strength protocol three times per week. Aerobic training was conducted twice per week. The supplemented group received ß-alanine and L-histidine orally (250 mg/kg per day). RESULTS: Maximum oxygen uptake, running distance, time to exhaustion and maximum strength were higher in the CET-P group than that in the SED group and even higher in the CET-S group than that in the CET-P group (P < 0.01). CET-S showed lower oxidative stress and inflammation markers and higher heat shock protein 72 kDa content and mRNA expression for calcium transporters in the skeletal muscle compared to SED. CONCLUSION: CET together with ß-alanine and L-histidine supplementation in rats with HF can elicit adaptations in both maximum oxygen uptake, running distance, time to exhaustion, maximum strength, oxidative stress, inflammation and mRNA expression. Carnosine may influence beneficial adjustments in the cell stress response in the skeletal muscle and upregulate the mRNA expression of calcium transporters.


Asunto(s)
Carnosina/farmacología , Insuficiencia Cardíaca , Oxígeno/sangre , Condicionamiento Físico Animal , Animales , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/sangre , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Histidina/farmacología , Masculino , Ratas , Ratas Wistar , beta-Alanina/farmacología
8.
Mol Cell Endocrinol ; 535: 111397, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34273443

RESUMEN

Papillary thyroid cancer (PTC), whose incidence has been increasing in the last years, occurs more frequently in women. Experimental studies suggested that estrogen could be an important risk factor for the higher female incidence. In fact, it has been demonstrated that 17ß-estradiol (E2) could increase proliferation and dedifferentiation in thyroid follicular cells. Genomic estrogen responses are typically mediated through classical estrogen receptors, the α and ß isoforms, which have been described in normal and abnormal human thyroid tissue. Nevertheless, effects mediated through G protein estrogen receptor 1 (GPR30/GPER/GPER1), described in some thyroid cancer cell lines, could be partially responsible for the regulation of growth in normal cells. In this study, GPER1 gene and protein expression are described in non-malignant and in papillary thyroid cancer (PTC), as well as its association with clinical features of patients with PTC. The GPER1 expression was lower in PTC as compared to paired non-malignant thyroid tissues in fresh samples of PTC and in silico analysis of GEO and TCGA databases. In PTC cases of TCGA database, low GPER1 mRNA expression was independently associated with metastatic lymph nodes, female gender, and BRAF mutation. Besides, GPER1 mRNA levels were positively correlated with mRNA levels of thyroid differentiation genes. These results support the hypothesis that GPER1 have a role in PTC tumorigenesis and might be a potential target for its therapy. Further studies are needed to determine the functionality of these receptors in normal and diseased thyroid.


Asunto(s)
Biología Computacional/métodos , Regulación hacia Abajo , Receptores de Estrógenos/genética , Receptores Acoplados a Proteínas G/genética , Cáncer Papilar Tiroideo/genética , Neoplasias de la Tiroides/genética , Estudios de Casos y Controles , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis Linfática , Masculino , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Caracteres Sexuales
9.
Cell Biochem Funct ; 39(6): 780-790, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34031899

RESUMEN

Stem-like cells (CSCs) have a tumour-initiating capacity and play critical role in tumour metastasis, relapse and resistance to therapy. The ectoenzyme CD73, encoded by the NT5E gene, which catalyses the hydrolysis of AMP into adenosine, has been associated to an immunosuppressive tumour microenvironment, tumour cell adhesion and migration. Therefore, we investigated the expression and activity of CD73 in sphere-forming cells from cervical cancer in comparison to monolayer cells in vitro. In addition, in silico analysis was performed to determine the expression of CD73 and other members of purinergic signalling in CSC-like population derived from different tumour types in comparison to monolayer cells. CD73 protein expression levels and functionality in SiHa cells were analysed by flow cytometry and enzymatic assay, respectively. In silico investigation was performed through the analysis of seven datasets from different tumour types using GEO database. In vitro analysis showed a decreased CD73 protein expression and enzymatic activity in cervical spheres, when compared to monolayers. In addition, when sphere-derived cells are re-plated as monolayer culture, the CD73 expression and activity are restored. Supporting the in vitro results, in silico analysis showed that three-dimensional spheres derived from cervical, thyroid and breast cancer presented decreased expression of CD73, when compared to their adherent counterparts. The decreased expression of CD73 in sphere-derived cells or CSC-enriched population reinforce its important role in cell adhesion, tumour spreading ability and metastasis, suggesting CD73 as potential target to be further investigated in cervical cancer.


Asunto(s)
5'-Nucleotidasa/genética , Microambiente Tumoral/genética , Neoplasias del Cuello Uterino/genética , 5'-Nucleotidasa/metabolismo , Femenino , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Humanos , Células Tumorales Cultivadas , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología
10.
Stem Cell Rev Rep ; 17(2): 341-356, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33511519

RESUMEN

In the end of 2019 COVID-19 emerged as a new threat worldwide and this disease present impaired immune system, exacerbated production of inflammatory cytokines, and coagulation disturbs. Mesenchymal stem cell (MSC) derived extracellular vesicles (EVs) have emerged as a therapeutic option due to its intrinsic properties to alleviate inflammatory responses, capable to promote the restoring of injured tissue. EVs contain heterogeneous cargo, including active microRNAs, small noncoding sequences involved in post-transcriptional gene repression or degradation and can attach in multiple targets. This study investigated whether the MSC-EVs miRNA cargo has the capacity to modulate the exacerbated cytokines, cell death and coagulation disturbs present in severe COVID-19. Through bioinformatics analysis, four datasets of miRNA, using different stem cell tissue sources (bone marrow, umbilical cord and adipose tissue), and one dataset of mRNA (bone marrow) were analyzed. 58 miRNAs overlap in the four miRNA datasets analyzed. Sequentially, those miRNAs present in at least two datasets, were analyzed using miRWalk for the 3'UTR binding target mRNA. The result predicted 258 miRNAs for exacerbated cytokines and chemokines, 266 miRNAs for cell death genes and 148 miRNAs for coagulation cascades. Some miRNAs may simultaneously attenuate inflammatory agents, inhibit cell death genes and key factors of coagulation cascade, consequently preventing tissue damage and coagulation disturbs. Therefore, the MSC-derived EVs due to their heterogeneous cargo are a potential multitarget approach able to improve the survival rates of severe COVID-19 patients.


Asunto(s)
COVID-19/inmunología , Vesículas Extracelulares/inmunología , Células Madre Mesenquimatosas/inmunología , MicroARNs/inmunología , SARS-CoV-2/inmunología , Vesículas Extracelulares/virología , Humanos , Células Madre Mesenquimatosas/virología
11.
Life Sci ; 256: 117862, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32473244

RESUMEN

Vascular smooth muscle cells (VSMCs) exhibit a high degree of plasticity when they undergo the progression from a normal to a disease condition, which makes them a potential target for evaluating early markers and for the development of new therapies. Purinergic signalling plays a key role in vascular tonus control, ATP being an inductor of vasoconstriction, whereas adenosine mediates a vasodilation effect antagonising the ATP actions. The control of extracellular ATP and adenosine levels is done by ectonucleotidases, which represent a potential target to be evaluated in the progression of cardiovascular diseases. In this study, we analysed the basal activity and expression of the ectonucleotidases in aortic rat VSMCs, and we further performed in silico analysis to determine the expression of those enzymes in conditions that mimicked vascular diseases. Cultured in vitro VSMCs showed a prominent expression of Entpd1 followed by Entpd2 and Nt5e (CD73) and very low levels of Entpd3. Slightly faster AMP hydrolysis was observed when compared to ATP and ADP nucleotides. In silico analysis showed that the ectonucleotidases were modulated after induction of conditions that can lead to vascular diseases such as, hypertensive and hypotensive mice models (Nt5e); exposition to high-fat (Entpd1 and Entpd2) or high-phosphate (Nt5e) diet; mechanical stretch (Entpd1, Entpd2 and Nt5e); and myocardial infarction (Entpd1). Our data show that VSMCs are able to efficiently metabolise the extracellular nucleotides generating adenosine. The modulation of Entpd1, Entdp2 and Nt5e in vascular diseases suggests these ectoenzymes as potential targets or markers to be investigated in future studies.


Asunto(s)
5'-Nucleotidasa/metabolismo , Adenosina Trifosfatasas/metabolismo , Antígenos CD/metabolismo , Apirasa/metabolismo , Músculo Liso Vascular/patología , Enfermedades Vasculares/fisiopatología , Adenosina/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Aorta/citología , Simulación por Computador , Proteínas Ligadas a GPI/metabolismo , Ratones , Músculo Liso Vascular/enzimología , Nucleótidos/metabolismo , Ratas , Ratas Wistar , Enfermedades Vasculares/enzimología
12.
Life Sci ; 241: 117112, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31790688

RESUMEN

BACKGROUND: Thyroid cancer incidence has been increasing, acquiring a greater importance in health, especially of women, who are more frequently affected. As 17-ß-estradiol (E2) has been shown to have a proliferative effect on benign and malignant thyroid cells, G protein-coupled estrogen receptor (GPER1) could have a role on the pathogenesis of thyroid cancer. OBJECTIVE: To evaluate data on GPER1 in the thyroid. DATA SOURCES: PubMed, Scielo and Cochrane Library databases were searched, using the keywords GPER1 or GPR30 or GPER and thyroid, since the inception until Jun, 2019. Other sources were used, as cross-referencing. STUDY SELECTION: All studies which evaluated GPER1 GPER1 or GPR30 or GPER in the thyroid. DATA EXTRACTION: From 23 articles identified, eight studies were included: one in commercial samples of human thyroid, four in human thyroid cancer cell lines, and three in human samples of benign and/or malignant thyroid diseases. DATA SYNTHESIS: GPER1 gene and protein expression were described, respectively, in six and five studies, and the results varied according to the study. In three studies, increased proliferation of four thyroid cancer cell lines were induced by E2, with evidences suggesting that GPER1 at least partially mediated growth in these cells. GPER1 was identified in the cell membrane, in three studies, and in the cytoplasm in two studies. CONCLUSIONS: The paucity of studies about GPER1 in the thyroid, as well as methodological differences between them, precludes firm conclusions about GPER1 role in the thyroid, although there are some evidences of GPER1-induced proliferation of thyroid cancer cells.


Asunto(s)
Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Glándula Tiroides/fisiología , Neoplasias de la Tiroides/metabolismo , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Receptores de Estrógenos/genética , Receptores Acoplados a Proteínas G/genética , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología
13.
Methods Mol Biol ; 2065: 175-190, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31578695

RESUMEN

For tissues obtained from glioma samples with/without nonneoplastic brain there is no consensus for universal reference gene but there are some potential genes that might have good stability, under certain conditions. Considering all points described in this work, the care with tissue collection, until gene amplification, directly impacts on the reliable characterization of its mRNA levels. Moreover, it is clear the importance of selecting the most appropriate reference genes for each experimental situation, to allow the accurate normalization of target genes, especially for genes that are subtly regulated.


Asunto(s)
Neoplasias Encefálicas/diagnóstico , Genes Esenciales , Glioma/diagnóstico , ARN Mensajero/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Encéfalo/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Glioma/patología , Humanos , Estabilidad del ARN , ARN Mensajero/metabolismo , Manejo de Especímenes/métodos , Manejo de Especímenes/normas
14.
J Mol Med (Berl) ; 97(10): 1491-1506, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31401659

RESUMEN

Mesenchymal stromal cells (MSCs) are frequently recruited to tumor sites to play a part in the tumor microenvironment (TME). However, their real impact on cancer cell behavior remains obscure. Here we investigated the effects of human adipose-derived stromal cell (hADSC) secretome in autophagy of glioblastoma (GBM), as a way to better comprehend how hADSCs influence the TME. GBM U-87 MG cells were treated with conditioned medium (CM) from hADSCs and autophagic flux was evaluated. hADSC CM treatment blocked the autophagic flux in tumor cells, as indicated by the accumulation of autophagosomes in the cytosol, the high LC3-II and p62/SQSTM1 protein levels, and the lack of increase in the amount of acidic vesicular organelles. These effects were further detected in other GBM cell lines tested and also in co-cultures of hADSCs and U-87 MG. hADSC CM did not compromise lysosomal acidification; however, it was able to activate mTORC1 signaling and, as a consequence, led to a decrease in the nuclear translocation of TFEB, a master transcriptional regulator of lysosomal biogenesis and autophagy, thereby contributing to a defective autophagic process. hADSCs secrete transforming growth factor beta 1 (TGFß1) and this cytokine is an important mediator of CM effects on autophagy. A comprehensive knowledge of MSC roles in tumor biology is of great importance to shed light on the complex dialog between these cells and to explore such interactions therapeutically. The present results help to elucidate the paracrine effects of MSCs in tumors and bring attention to the potential to be explored in MSC secretome. KEY MESSAGES: hADSC secretome specifically affects the biology of GBM cells. hADSCs block the late steps of autophagic flux in GBM cells. hADSC secretome activates mTORC1 signaling and reduces TFEB nuclear translocation in GBM cells.


Asunto(s)
Autofagia/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Células del Estroma/metabolismo , Microambiente Tumoral/efectos de los fármacos , Transporte Activo de Núcleo Celular/efectos de los fármacos , Tejido Adiposo/citología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína Sequestosoma-1/metabolismo , Transducción de Señal/efectos de los fármacos
15.
Biochem J ; 476(11): 1637-1651, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31085558

RESUMEN

Extracellular ATP (eATP) and its metabolites have emerged as key modulators of different diseases and comprise a complex pathway called purinergic signaling. An increased number of tools have been developed to study the role of nucleotides and nucleosides in cell proliferation and migration, influence on the immune system and tumor progression. These tools include receptor agonists/antagonists, engineered ectonucleotidases, interference RNAs and ectonucleotidase inhibitors that allow the control and quantification of nucleotide levels. NTPDase1 (also called apyrase, ecto-ATPase and CD39) is one of the main enzymes responsible for the hydrolysis of eATP, and purified enzymes, such as apyrase purified from potato, or engineered as soluble CD39 (SolCD39), have been widely used in in vitro and in vivo experiments. However, the commercial apyrase had its effects recently questioned and SolCD39 exhibits limitations, such as short half-life and need of high doses to reach the expected enzymatic activity. Therefore, this study investigated a non-viral method to improve the overexpression of SolCD39 and evaluated its impact on other enzymes of the purinergic system. Our data demonstrated that PiggyBac transposon system proved to be a fast and efficient method to generate cells stably expressing SolCD39, producing high amounts of the enzyme from a limited number of cells and with high hydrolytic activity. In addition, the soluble form of NTPDase1/CD39 did not alter the expression or catalytic activity of other enzymes from the purinergic system. Altogether, these findings set the groundwork for prospective studies on the function and therapeutic role of eATP and its metabolites in physiological and pathological conditions.


Asunto(s)
Antígenos CD/química , Antígenos CD/metabolismo , Apirasa/química , Apirasa/metabolismo , Animales , Antígenos CD/genética , Apirasa/genética , Línea Celular , Elementos Transponibles de ADN/genética , Nucleótidos/metabolismo , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Solubilidad , Transfección , Regulación hacia Arriba
16.
Mol Cell Endocrinol ; 479: 54-60, 2019 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-30184475

RESUMEN

The incidence of papillary thyroid carcinoma (PTC) has been increasing, which raised the interest in its molecular pathways. Although the high expression of ecto-5'-nucleotidase (NT5E) gene expression and NT5E enzymatic activity in several types of cancer is associated with tumor progression, its role in PTC remains unknown. Here, we investigated the AMP hydrolysis in human normal thyroid cells and PTC cells, in primary culture, and the association of NT5E expression with clinical aspects of PTC patients. AMPase activity was higher in thyroid cells isolated from PTC, as compared to normal thyroid (P = 0.0063). Significant correlation was observed between AMPase activity and NT5E levels in primary thyroid cell cultures (r = 0.655, P = 0.029). NT5E expression was higher in PTC than in the adjacent non-malignant thyroid tissue (P = 0.0065) and were positively associated with metastatic lymph nodes (P = 0.0007), risk of recurrence (P = 0.0033), tumor size (P = 0.049), and nodular hyperplasia in the adjacent thyroid parenchyma, when compared to normal thyroid or lymphocytic thyroiditis (P = 0.0146). After adjusting for potential confounders, the malignant/non-malignant paired expression ratio of NT5E mRNA was independently associated with metastatic lymph nodes (P = 0.0005), and tumor size (P=0.0005). In addition, the analysis of PTC described in the TCGA database also showed an association between higher expression of NT5E and metastatic lymph nodes, and tumor microinvasion. These results support the hypothesis that NT5E have a role in PTC microenvironment and might be a potential target for PTC therapy.


Asunto(s)
5'-Nucleotidasa/metabolismo , Ganglios Linfáticos/enzimología , Ganglios Linfáticos/patología , Metástasis Linfática/patología , Cáncer Papilar Tiroideo/enzimología , Cáncer Papilar Tiroideo/patología , 5'-Nucleotidasa/genética , Línea Celular Tumoral , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Persona de Mediana Edad , Nucleotidasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Cáncer Papilar Tiroideo/genética , Glándula Tiroides/patología
17.
Cancer Microenviron ; 11(1): 61-70, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29455338

RESUMEN

The incidence of differentiated thyroid cancer has been increasing. Nevertheless, its molecular mechanisms are not well understood. In recent years, extracellular nucleotides and nucleosides have emerged as important modulators of tumor microenvironment. Extracellular ATP is mainly hydrolyzed by NTPDase1/CD39 and NTPDase2/CD39L1, generating AMP, which is hydrolyzed by ecto-5'-nucleotidase (CD73) to adenosine, a possible promoter of tumor growth and metastasis. There are no studies evaluating the expression and functionality of these ectonucleotidases on normal or tumor-derived thyroid cells. Thus, we investigated the ability of thyroid cancer cells to hydrolyze extracellular ATP generating adenosine, and the expression of ecto-enzymes, as compared to normal cells. We found that normal thyroid derived cells presented a higher ability to hydrolyze ATP and higher mRNA levels for ENTDP1-2, when compared to papillary thyroid carcinoma (PTC) derived cells, which had a higher ability to hydrolyze AMP and expressed CD73 mRNA and protein at higher levels. In addition, adenosine induced an increase in proliferation and migration in PTC derived cells, whose effect was blocked by APCP, a non-hydrolysable ADP analogue, which is an inhibitor of CD73. Taken together, these results showed that thyroid follicular cells have a functional purinergic signaling. The higher expression of CD73 in PTC derived cells might favor the accumulation of extracellular adenosine in the tumor microenvironment, which could promote tumor progression. Therefore, as already shown for other tumors, the purinergic signaling should be considered a potential target for thyroid cancer management and treatment.

18.
Cell Biol Int ; 42(2): 139-152, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28949053

RESUMEN

Cervical cancer is the fourth most common cancer affecting women worldwide. Among many factors, the presence of cancer stem cells, a subpopulation of cells inside the tumor, has been associated with a worse prognosis. Considering the importance of gene expression studies to understand the biology of cervical cancer stem cells (CCSC), this work identifies stable reference genes for cervical cancer cell lines SiHa, HeLa, and ME180 as well as their respective cancer stem-like cells. A literature review was performed to identify validated reference genes currently used to normalize RT-qPCR data in cervical cancer cell lines. Then, cell lines were cultured in regular monolayer or in a condition that favors tumor sphere formation. RT-qPCR was performed using five reference genes: ACTB, B2M, GAPDH, HPRT1, and TBP. Stability was assessed to validate the selected genes as suitable reference genes. The evaluation validated B2M, GAPDH, HPRT1, and TBP in these experimental conditions. Among them, GAPDH and TBP presented the lowest variability according to the analysis by Normfinder, Bestkeeper, and ΔCq methods, being therefore the most adequate genes to normalize the combination of all samples. These results suggest that B2M, GAPDH, HPRT1, and TBP are suitable reference genes to normalize RT-qPCR data of established cervical cancer cell lines SiHa, HeLa, and ME180 as well as their derived cancer stem-like cells. Indeed, GAPDH and TBP seem to be the most convenient choices for studying gene expression in these cells in monolayers or spheres.


Asunto(s)
Células Madre Neoplásicas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Neoplasias del Cuello Uterino/genética , Línea Celular Tumoral , Femenino , Células HeLa , Humanos , Células Madre Neoplásicas/patología , Estándares de Referencia , Esferoides Celulares , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología
19.
J Cell Biochem ; 118(8): 2430-2442, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28120532

RESUMEN

Human Limbal (L-MSCs) and Dermal Mesenchymal Stem Cell (D-MSCs) possess many properties that increase their therapeutic potential in ophthalmology and dermatology. It is known that purinergic signaling plays a role in many aspects of mesenchymal stem cells physiology. They release and respond to purinergic ligands, altering proliferation, migration, differentiation, and apoptosis. Therefore, more information on these processes would be crucial for establishing future clinical applications using their differentiation potential, but without undesirable side effects. This study evaluated and compared the expression of ecto-nucleotidases, the enzymatic activity of degradation of extracellular nucleotides and the metabolism of extracellular ATP in D-MSCs and L-MSCs, isolated from discard tissues of human skin and sclerocorneal rims. The D-MSCs and L-MSCs showed a differentiation potential into osteogenic, adipogenic, and chondrogenic lineages and the expression of markers CD105+ , CD44+ , CD14- , CD34- , CD45- , as expected. Both cells hydrolyzed low levels of extracellular ATP and high levels of AMP, leading to adenosine accumulation that can regulate inflammation and tissue repair. These cells expressed mRNA for ENTPD1, 2, 3, 5 and 6, and CD73 that corresponded to the observed enzymatic activities. Thus, considering the degradation of ATP and adenosine production, limbal MSCs are very similar to dermal MSCs, indicating that from the aspect of extracellular nucleotide metabolism L-MSCs are very similar to the characterized D-MSCs. J. Cell. Biochem. 118: 2430-2442, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Adenosina Trifosfato/metabolismo , Adenosina/metabolismo , Células Madre Mesenquimatosas/metabolismo , Nucleótidos/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adipogénesis/genética , Adipogénesis/fisiología , Antígenos CD34/genética , Antígenos CD34/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Condrogénesis/genética , Condrogénesis/fisiología , Endoglina/genética , Endoglina/metabolismo , Humanos , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Hidrólisis , Antígenos Comunes de Leucocito/genética , Antígenos Comunes de Leucocito/metabolismo , Limbo de la Córnea/citología , Receptores de Lipopolisacáridos/genética , Receptores de Lipopolisacáridos/metabolismo , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Osteogénesis/genética , Osteogénesis/fisiología , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Piel/citología
20.
Cytotherapy ; 18(7): 828-37, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27210718

RESUMEN

BACKGROUND AIMS: The purpose of this study was to investigate whether the secretome of human adipose-derived stem cells (hADSC) affects human glioblastoma (GBM) cancer stem cell (CSC) subpopulation or has any influence on drug resistance and cell migration, evaluating the safety of hADSCs for novel cancer therapies. METHODS: hADSCs were maintained in contact with fresh culture medium to produce hADSCs conditioned medium (CM). GBM U87 cells were cultured with CM and sphere formation, expression of genes related to resistance and CSCs-MGMT, OCT4, SOX2, NOTCH1, MSI1-and protein expression of OCT4 and Nanog were analyzed. The influence of hADSC CM on GBM resistance to temozolomide (TMZ) was evaluated by measuring cumulative population doubling and hADSC CM influence on tumor cell migration was analyzed using transwell assay. RESULTS: hADSC CM did not alter CSC-related features such as sphere-forming capacity and expression of genes related to CSC. hADSC CM treatment alone did not change proliferation rate of U87 cells and, most important, did not alter the response of tumor cells to TMZ. However, hADSC CM secretome increased the migration capacity of glioblastoma cells. DISCUSSION: hADSC CM neither induced an enrichment of CSCs in U87 cells population nor interfered in the response to TMZ in culture. Nevertheless, paracrine factors released by hADSCs were able to modulate glioblastoma cells migration. These findings provide novel information regarding the safety of using hADSCs against cancer and highlight the importance of considering hADSC-tumor cells interactions in tumor microenvironment in the design of novel cell therapies.


Asunto(s)
Glioblastoma/tratamiento farmacológico , Células Madre Mesenquimatosas/metabolismo , Proteoma/uso terapéutico , Tejido Adiposo/citología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/patología , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Neoplásicas/patología , Esferoides Celulares/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA