RESUMEN
A covalently linked BODIPY-fullerene C60 dyad (BDP-C60 ) was synthesized as a two-segment structure, which consists of a visible light-harvesting antenna attached to an energy or electron acceptor moiety. This structure was designed to improve the photodynamic action of fullerene C60 to inactivate bacteria. The absorption spectrum of BDP-C60 was found to be a superposition of the spectra of its constitutional moieties, whereas the fluorescence emission of the BODIPY unit was strongly quenched by the fullerene C60 . Spectroscopic, calculations, and redox studies indicate a competence between photoinduced energy and electron transfer. Protonating the dimethylaminophenyl substituent through addition of an acidic medium led to a substantial increase in the fluorescence emission, triplet excited state formation, and singlet molecular oxygen production. At physiological pH, photosensitized inactivation of Staphylococcus aureus mediated by 1â µM BDP-C60 exhibited a 4.5 log decrease of cell survival (>99.997 %) after 15â min irradiation. A similar result was obtained with Escherichia coli using 30â min irradiation. Moreover, proton-activated photodynamic action of BDP-C60 turned this dyad into a highly effective photosensitizer to eradicate E. coli. Therefore, BDP-C60 is an interesting photosensitizing structure in which the light-harvesting antenna effect of the BODIPY unit combined with the protonation of dimethylaminophenyl group can be used to improve the photoinactivation of bacteria.
Asunto(s)
Antiinfecciosos/química , Compuestos de Boro/química , Compuestos de Boro/farmacología , Fulerenos/química , Fulerenos/farmacología , Complejos de Proteína Captadores de Luz/química , Electroquímica , Escherichia coli/efectos de los fármacos , Estructura Molecular , Fotoquimioterapia , Staphylococcus aureus/efectos de los fármacosRESUMEN
The photophysical and photochemical properties of the xanthene dyes mercurochrome (MCr) and eosin-Y (Eos); and the phenazine dye safranine-O (SF) are evaluated in the presence of amino-terminated polyamidoamine (PAMAM) dendrimers of low generations. The dendrimers produce a red shift in the UV-vis absorption spectra of the dyes, which increases with concentration and the size of the PAMAM molecule. The Stern-Volmer plots of fluorescence quenching for xanthenic dyes present a downward curvature. It is ascribed to a static mechanism involving a dye-dendrimer binding. A non-linear fitting of the SV plots allows the calculation of the binding constants. For SF, the fluorescence is only slightly quenched by PAMAMs and the SV plots are linear. The binding constants are in the order Kbind (SF) ⪠Kbind (Eos) < Kbind (MCr). The difference must be due to important specific structural effects. A decrease in the triplet lifetime and an increase in the absorption of the semireduced form of the dyes are observed in the presence of dendrimers. While for the two xanthene dyes, the rate constants reach the diffusional limit for G2 and G3, for SF they are one order of magnitude lower. This is explained by a different quenching mechanism of the two types of dyes.
RESUMEN
The interaction of the singlet and triplet excited states of the synthetic dye safranine-O with carboxyl-terminated poly(amidoamine) (PAMAM) dendrimers was investigated in a buffer solution at pH 8. Low half-generation PAMAM dendrimers (G -0.5; G +0.5: G 1.5) were employed. The UV-vis absorption spectrum of the dye presents only a very small red shift in the presence of dendrimers. Fluorescence quenching was detected and it was interpreted by a static mechanism in terms of the association of the dye with the dendrimer. Laser flash photolysis experiments were carried out and transient absorption spectra of the triplet and radicals were obtained. The triplet state is quenched by the dendrimers with rate constants well below the diffusional limit. The quenching process was characterized as an electron transfer process and the quantum yield of radicals was estimated. It was found that radicals are formed with a high efficiency in the triplet quenching reaction.
RESUMEN
The photostability and photophysical properties of the dimethyl ester of the mycosporine-like amino acid shinorine have been experimentally evaluated in aqueous solution and in the presence of direct micelles prepared with a cationic or an anionic detergent, respectively. In comparison with shinorine, the ester molecule increases the photostability, the fluorescence quantum yield and the fluorescence lifetime in water as well as in the micellar solutions. The effects are more pronounced in sodium dodecyl sulfate solutions and suggest that the electrostatic attractions with the micellar interface contribute to limit the movement of the molecules and influence the relative rate of their deactivation channels. However, the predominance of the nonradiative decay is maintained together with the UV photoprotective ability of this atypical mycosporine species.
RESUMEN
The photodynamic inactivation mediated by 1,3,5,7-tetramethyl-8-[4-(N,N,N-trimethylamino)phenyl]-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene 3 and 8-[4-(3-(N,N,N-trimethylamino)propoxy)phenyl]-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene 4 was investigated on Staphylococcus aureus, Escherichia coli and Candida albicans. In vitro experiments indicated that BODIPYs 3 and 4 were rapidly bound to microbial cells at short incubation periods. Also, fluorescence microscopy images showed green emission of BODIPYs bound to microbial cells. Photosensitized inactivation improved with an increase of the irradiation time. Similar photoinactivation activities were found for both BODIPYs in bacteria. The photoinactivation induced by these BODIPYs was effective for both bacteria. However, the Gram-positive bacterium was inactivated sooner and with a lower concentration of a photosensitizer than the Gram-negative bacterium. After 15 min irradiation, the complete eradication of S. aureus was obtained with 1 µM photosensitizer. A reduction of 4.5 log in the E. coli viability was found when using 5 µM photosensitizer and 30 min irradiation. Also, the last conditions produced a decrease of 4.5 log in C. albicans cells treated with BODIPY 3, while 4 was poorly effective. On the other hand, the effect of the addition of KI on photoinactivation at different irradiation periods and salt concentrations was investigated. A smaller effect was observed in S. aureus because the photosensitizers alone were already very effective. In E. coli, photokilling potentiation was mainly found at longer irradiation periods. Moreover, the photoinactivation of C. albicans mediated by these BODIPYs was increased in the presence of KI. In solution, an increase in the formation of the BODIPY triplet states was observed with the addition of the salt, due to the effect of external heavy atoms. The greater intersystem crossing together with the formation of reactive iodine species induced by BODIPYs may be contributing to enhance the inactivation of microorganisms. Therefore, these BODIPYs represent interesting photosensitizers to inactivate microorganisms. In particular, BODIPY 3 in combination with KI was highly effective as a broad spectrum antimicrobial photosensitizer.
RESUMEN
Electron transfer (ET) rate constants were determined by means of lifetime measurements for the fluorescence quenching and by laser flash photolysis for the triplet quenching of the dye eosin Y by benzoquinones in acetonitrile. The results represent a new aspect of the dependence of the rate constants with the driving force in the diffusion limit region. That is, the rate constants for singlet quenching in the highly negative region of ΔGet do not decrease as predicted by Marcus theory, but rather show a small positive dependence on the driving force. However, it is found that, in the same free energy range, the triplet rate constants are lower than those for the singlet process. They also increase with the exergonicity of the reaction, but the dependence with ΔGet is less marked than that found for the singlet reaction. Even at a Gibbs energy change of -1.0 eV the triplet quenching rate constants do not reach the theoretical diffusion limit. The results are analyzed using the current theories for diffusion-mediated ET reactions.
Asunto(s)
Eosina Amarillenta-(YS)/química , Quinonas/química , Difusión , Transporte de Electrón , CinéticaRESUMEN
The laser flash photolysis technique (λ(exc)=355 nm) was used to investigate the mechanism of the HgCl(2) reduction mediated by CO(2)(-) radicals generated from quenching of the triplet states of 1,4-naphthoquinone (NQ) by formic acid. Kinetic simulations of the experimental signals support the proposed reaction mechanism. This system is of potential interest in the development of UV-A photoinduced photolytic procedures for the treatment of Hg(II) contaminated waters. The successful replacement of NQ with a commercial fulvic acid, as a model compound of dissolved organic matter, showed that the method is applicable to organic matter-containing waters without the addition of quinones.
Asunto(s)
Formiatos/química , Mercurio/análisis , Quinonas/química , Contaminantes Químicos del Agua/análisis , Anaerobiosis , Restauración y Remediación Ambiental/métodos , Cinética , Mercurio/química , Fotólisis , Contaminantes Químicos del Agua/química , Purificación del Agua/métodosRESUMEN
The knowledge of photochemical kinetics in colloidal systems is important in understanding environmental photochemistry on dispersed solid surfaces. As model materials for the chemically sorbed organic compounds present in natural environments, modified silica nanoparticles (NPs) were obtained here by condensation of the silanol groups of fumed silica nanoparticles with 4-methoxybenzyl alcohol. These particles were characterized by different techniques. To evaluate their toxicity, the inhibition of the natural luminescence emission of the marine bacterium Vibrio fischeri in suspensions of the particles was measured. Laser flash-photolysis experiments (λ(exc) = 266 nm) performed with NP suspensions in acetonitrile-aqueous phosphate buffer mixtures showed the formation of the lowest triplet excited state of the chemisorbed organic groups (λ(max) = 390 nm). DFT calculations of the absorption spectrum of this radical support the assignment. From the calculated triplet energy, a thermodynamically favorable energy transfer from these triplet states to oxygen to yield singlet molecular oxygen is predicted. A value of 0.09 was measured for the quantum yield of singlet molecular oxygen generation by air-saturated suspensions of the nanoparticles in the mixture of solvents acetonitrile-aqueous phosphate buffer. The quantum yield of singlet molecular oxygen generation by the free 4-methoxybenzyl alcohol in the same solvent is 0.31.
RESUMEN
The photophysics of Safranine-O (3,6-diamino-2,7-dimethyl-5 phenyl phenazinium chloride) (SfH(+)Cl(-)) was investigated in reverse micelles (RMs) of AOT (sodium bis(2-ethylhexyl)sulfosuccinate) with special emphasis on the triplet state processes. The triplet is formed in its monoprotonated form, independently of the pH of the water used to prepare the RMs. While the intersystem crossing quantum yields in RMs are similar to those in organic solvents, the triplet lifetime is much longer. Since the pH in the water pool of AOT RMs is close to 5 and the triplet state of the dye is subjected to proton quenching, the long lifetime indicates that the dye resides in a region where it cannot be reached by protons during its lifetime. All the measurements indicate that the dye is localized in the interface, sensing a medium of micropolarity similar to EtOH : water (3:1) mixtures. The quenching by aliphatic amines was also investigated. While the quenching by the hydrophobic tributylamine is similar to that in methanol, the hydro-soluble triethanolamine is one order of magnitude more effective in RMs than in homogeneous solution. In the latter case the quenching process is interpreted by a very fast intramicellar quenching, the overall kinetics being controlled by the exchange of amine molecules between RMs. Semireduced dye is formed in the quenching process in RMs in the di-protonated state with a comparable quantum yield to the monoprotonated state formed in homogeneous solvents. The results point to the advantage of the reverse micellar system for the generation of active radicals for the initiation of vinyl polymerization, since a much lower concentration of amine can be employed with similar quantum yields.
Asunto(s)
Aminas/química , Ácido Dioctil Sulfosuccínico/química , Micelas , Fenazinas/química , Análisis Espectral , Absorción , Etanolaminas/química , Radicales Libres/químicaRESUMEN
The photodynamic mechanism of action induced by 5-(4-trifluorophenyl)-10,15,20-tris(4-N,N,N-trimethylammoniumphenyl)porphyrin (TFAP(3+)), 5,10,15,20-tetrakis(4-N,N,N-trimethylammoniumphenyl)porphyrin (TMAP(4+)) and 5,10,15,20-tetrakis(4-N-methylpyridyl)porphyrin (TMPyP(4+)) was investigated on Candida albicans cells. These cationic porphyrins are effective photosensitizers, producing a ~5 log decrease of cell survival when the cultures are incubated with 5 µM photosensitizer and irradiated for 30 min with visible light. Studies under anoxic conditions indicated that oxygen is necessary for the mechanism of action of photodynamic inactivation of this yeast. Furthermore, photoinactivation of C. albicans cells was negligible in the presence of 100 mM azide ion, whereas the photocytotoxicity induced by these porphyrins increased in D(2)O. In contrast, the addition of 100 mM mannitol produced a negligible effect on the cellular phototoxicity. On the other hand, in vitro direct observation of singlet molecular oxygen, O(2)((1)Δ(g)) phosphorescence at 1270 nm was analyzed using C. albicans in D(2)O. A shorter lifetime of O(2)((1)Δ(g)) was found in yeast cellular suspensions. These cationic porphyrins bind strongly to C. albicans cells and the O(2)((1)Δ(g)) generated inside the cells is rapidly quenched by the biomolecules of the cellular microenvironment. Therefore, the results indicate that these cationic porphyrins appear to act as photosensitizers mainly via the intermediacy of O(2)((1)Δ(g)).
Asunto(s)
Candida albicans/efectos de los fármacos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Porfirinas/química , Compuestos de Amonio Cuaternario/química , Azidas/química , Óxido de Deuterio/química , Luz , Manitol/química , Oxígeno/química , Porfirinas/farmacología , Compuestos de Amonio Cuaternario/farmacología , Oxígeno Singlete/metabolismoRESUMEN
Several yeast species are able to synthesize and accumulate UV-radiation-absorbing mycosporine metabolites that are of unclear physiological function. In this work we analyzed the relationship between mycosporine-glutaminol glucoside (MGG) production, cell survival after UVB irradiation, and formation of cyclobutane pyrimidine dimers (CPDs). We also assessed the photostability and singlet oxygen quenching activity of MGG. A set of nine isolates of the basidiomycetous yeast Cryptococcus steppossus cultured in both dark and light conditions was used for the studies. Survival of the UVB-irradiated isolates and MGG concentration had a linear relationship when the concentration was over 2.5 mg g(-1). CPD accumulation and MGG accumulation were inversely related. MGG in aqueous solution was photostable with a photodecomposition quantum yield of 1.16 × 10(-5). MGG quenching of singlet oxygen was also observed, and the rate constant for the process in D(2)O was 5.9 × 10(7) M(-1) s(-1). Our results support the idea that MGG plays an important role as a UVB photoprotective metabolite in yeasts by protecting against direct damage on DNA and probably against indirect damage by singlet oxygen quenching.
Asunto(s)
Antioxidantes/metabolismo , Cryptococcus/efectos de la radiación , Ciclohexanoles/metabolismo , Glucósidos/metabolismo , Rayos Ultravioleta , Cryptococcus/metabolismo , Ciclohexanoles/química , Daño del ADN , Glucósidos/química , Dímeros de Pirimidina/metabolismo , Oxígeno Singlete/metabolismoRESUMEN
Butoxylated silica nanoparticles (BSN) were prepared by esterification of the silanol groups of fumed silica nanoparticles with butanol and characterized by 13C and 29Si NMR and thermogravimetry. The molecular probes benzophenone (BP) and safranine-T were used to investigate the BSN suspensions in water:acetonitrile. Laser flash-photolysis experiments at lambda(exc)=266 nm performed with BSN suspended in acetonitrile:aqueous phosphate buffer supported previous results of our group obtained by time-resolved phosphorescence experiments and showed that only free and adsorbed excited triplet states of BP and diphenylketyl radicals contribute to the signals. The UV-vis spectroscopic and photophysical properties of safranine-T are strongly solvent-dependent. Thus, the analysis of the emission spectra and fluorescence lifetimes yielded information on the localization of this probe molecule in suspensions of BSN and of the bare silica nanoparticles. The values of the equilibrium constant for the adsorption of the ground-state safranine-T on the particles were found to be (9.2+/-0.8)x10(4), (7.2+/-0.8)x10(5), and (3.0+/-0.1)x10(4) for the BSN in 1:1 acetonitrile:water, SiO2 in 1:1 acetonitrile:water, and SiO2 in acetonitrile, respectively.
Asunto(s)
Sondas Moleculares/análisis , Sondas Moleculares/química , Nanopartículas/química , Dióxido de Silicio/análisis , Dióxido de Silicio/química , Adsorción , Benzofenonas/química , Espectroscopía de Resonancia Magnética , Estructura Molecular , Fenazinas/química , Soluciones , TemperaturaRESUMEN
The photophysical properties and photodynamic effect of Zn(ii), Pd(ii), Cu(ii) and free-base 5-(4-(trimethylammonium)phenyl)-10,15,20-tris(2,4,6-trimethoxy phenyl)porphyrin (H2P) iodide have been studied in N,N-dimethylformamide (DMF) and in different biomimetic systems. The absorption, fluorescence, triplet state and singlet molecular oxygen production of the metal complexes were all referred to H2P. The photodynamic activity was first analyzed using 9,10-dimethylanthracene and guanosine 5'-monophosphate in N,N-dimethylformamide. The photooxidation processes were also investigated in benzene/benzyl-n-hexadecyldimethyl ammonium chloride/water reverse micelles. Photosensitization efficiency of these porphyrins was H2P approximately ZnP > PdP in homogeneous solution and ZnP > H2P > PdP in micelles, whereas no photooxidation effect was detected using the Cu(ii) complex. Human erythrocytes were used as a biological membrane model. The photohemolytic activity depended on irradiation time, sensitizer and concentration of the agent. When cells were treated with 1 microM sensitizer, the hemolytic activity was H2P > ZnP >> CuP. However, it was H2P > ZnP approximately CuP using 5 microM of the respective porphyrin. Although CuP could undergo a type I photoreaction, in all cases the photohemolytic effect considerably diminishes in anoxic conditions, indicating that an oxygen atmosphere is required for the mechanism of cellular membrane damage. The behavior of these amphiphilic metallo porphyrins provides information on the photodynamic activity of these agents in biomimetic microenvironments.
Asunto(s)
Luz , Imitación Molecular , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Porfirinas/química , Porfirinas/farmacología , Eritrocitos/efectos de los fármacos , Hemólisis/efectos de los fármacos , Humanos , Micelas , Fotoquimioterapia , Espectrometría de Fluorescencia , Espectrofotometría UltravioletaRESUMEN
The quenching of the excited singlet and triplet states of phenosafranine by aliphatic amines was investigated in acetonitrile and methanol. The rate constants for the quenching of the excited singlet state depend on the one-electron redox potential of the amine suggesting a charge transfer process. However, for the triplet state, quenching dependence on the redox potential either is opposite to the expectation or there is not dependence at all. Moreover, in MeOH the first-order rate constant for the decay of the triplet state, k(obs) presents a downward curvature as a function of the amine concentration. This behavior was interpreted in terms of the reversible formation of an intermediate excited complex, and from a kinetic analysis the equilibrium constant K(exc) could be extracted. The log K(exc) shows a linear relationship with the pKb of the amine. On the other hand, for the triplet state quenching in acetonitrile k(obs) varies linearly with the amine concentration. Nevertheless, the quenching rate constants correlate satisfactorily with pKb and not with the redox potential. The results were interpreted in terms of a proton transfer quenching, reversible in the case of MeOH and irreversible in MeCN. This was further confirmed by the transient absorption spectra obtained by laser flash photolysis. The transient absorption immediately after the triplet state quenching could be assigned to the unprotonated form of the dye. At later times the spectrum matches the semireduced form of the dye. The overall process corresponds to a one-electron reduction of the dye mediated by the deprotonated triplet state.
Asunto(s)
Aminas/química , Fenazinas/química , Colorantes/química , Electrones , Oxidación-Reducción , Protones , SolventesRESUMEN
The photochemistry of Ru(bpy)(3)+2 in the presence of amines was investigated in water by laser flash photolysis. N,N'-Dimethylaniline and p-phenylenediamine quench the luminescent metal to ligand charge transfer (MLCT) excited state of the complex by an electron transfer reaction that produces the semireduced form Ru(bpy)3+ in relatively high yields. On the other hand, triethylamine (TEA) and aniline do not quench the MLCT. Nevertheless, when laser flash irradiation at 532 nm is carried out in the presence of these amines, the formation of Ru(bpy)3+ is clearly detected by its transient absorption at 510 nm. These results are interpreted by an electron transfer reaction with the participation of a nonemitting excited state of the complex, formed independently of the MLCT from the Franck-Condon or the relaxed singlet excited state. The rate constants for the quenching of this state by TEA and aniline and the quantum yields for Ru(bpy)(3)+ were determined. The new state is formed in a very fast process and has a lifetime of ca 4 micros in water.
Asunto(s)
2,2'-Dipiridil/análogos & derivados , Aminas/química , Compuestos Organometálicos/química , 2,2'-Dipiridil/química , Compuestos de Anilina/química , Etilaminas/química , Cinética , Oxidación-Reducción , Soluciones , TermodinámicaRESUMEN
The values of the rate constants for the reactions of the sulfate (2.5 x 10(9) M(-1) s(-1)) and hydrogen phosphate (2.2 x 10(8) M(-1) s(-1)) radicals with silica nanoparticles are obtained by flash photolysis experiments with silica suspensions containing S(2)O(8)(2-) or P(2)O(8)(4-), respectively. The interaction of these radicals with the silica nanoparticles leads to formation of transients, probably adsorbed sulfate and hydrogen phosphate radicals, with absorption maxima at around 320 and 350 nm, respectively. A different mechanism takes place for the interaction of the less oxidizing dithiocyanate radicals with the silica nanoparticles. These radicals selectively react with the dissociated silanol groups of the nanoparticles with a rate constant at 298.2K of 7 x 10(7) M(-1) s(-1) (per mol of SiO(-) groups), and there is no evidence for their adsorption at the surface. All the results are discussed in terms of the Smoluchowski equation and redox potential of the inorganic radicals.
Asunto(s)
Nanoestructuras , Fosfatos/química , Dióxido de Silicio/química , Sulfatos/química , Tiocianatos/química , Agua/química , Aniones , Cinética , Oxidación-Reducción , Fosfatos/metabolismo , Fotólisis , Análisis Espectral , Sulfatos/metabolismo , Propiedades de Superficie , Tiocianatos/metabolismoRESUMEN
Kinetics and mechanism of the aerobic Riboflavin (Rf, vitamin B2) sensitized photodegradation of Phenylephrine (Phen), a phenolamine belonging to the sympathomimetic drugs family, has been studied in water, employing continuous photolysis, polarographic detection of oxygen uptake, steady-state and time-resolved fluorescence spectroscopy, time-resolved IR-phosphorescence and laser flash photolysis. Results indicate the formation of a weak dark complex Rf-Phen, with an apparent association constant of 5.5+/-0.5M(-1), only detectable at Phen concentrations much higher than those employed in the photochemical experiments. Under irradiation, an intricate mechanism of competitive reactions operates. Phen quenches excited singlet and triplet states of Rf, with rate constants of 3.33+/-0.08 and 1.60+/-0.03x10(9)M(-1)s(-1), respectively. With the sympathomimetic drug in a concentration similar to that of dissolved molecular oxygen in water, Phen and oxygen competitively quench triplet excited Rf, generating superoxide radical anion and singlet molecular oxygen (O2((1)Deltag)) by processes initiated by electron- and energy-transfer mechanisms respectively. As a global result, the photodegradation of the vitamin, a known process taking place from its excited triplet state, is retarded, whereas the phenolamine, practically unreactive towards these oxidative species, behaves as a highly efficient physical deactivator of O2((1)Deltag). The phenolamine structure in Phen appears as an excellent scavenger of activated oxygen species, comparatively superior, in kinetic terms, to some commercial phenolic antioxidants.
Asunto(s)
Fenilefrina/farmacología , Fotoquímica , Especies Reactivas de Oxígeno , Simpatomiméticos/farmacología , Cinética , Rayos Láser , Estrés Oxidativo , Triptófano/efectos de los fármacosRESUMEN
The distribution of different aliphatic and aromatic amines: n-butylamine (n-BA), isobutylamine (i-BA), tert-butylamine (t-BA), piperidine (PIP), N,N-dimethylaniline (DMA) and N-methylaniline (MA) in water/sodium 1,4-bis(2-ethylhexyl)sulfosuccinate(AOT)/n-hexane reverse micelles was investigated by steady-state fluorescence measurements. The partition constants were measured by an indirect method based on the effect that amine partitioning exert on the bimolecular rate of the reaction between a microphase incorporated fluorophore (Ru(bpy)2+(3)) and the quencher, (Fe(CN)3-(6)). For MA, that can act as a quencher of the fluorophore a direct method was used. The results show that primary amines have larger partition constants than the secondary ones. For tertiary amines the distribution constants were practically negligible. Laser flash photolysis experiments confirmed that tertiary amines, both aliphatic and aromatic, are not incorporated to the micellar pseudophase. The effect of the amine structure on the partition constant was analyzed through linear solvation free energy relationships (LSER) using solute parameters and compared with those obtained for alcohols. Hydrogen bond interactions with the AOT polar heads appear to be the main driving force for the distribution of amines between the organic and micellar pseudophases, whereas the size of the alkyl or aromatic group tends to hinder it.
RESUMEN
The oxidation kinetics and mechanism of the phenolic derivatives of alpha,alpha,alpha-trifluorotoluene, 2-trifluoromethylphenol, 3-trifluoromethylphenol (3-TFMP), 4-trifluoromethylphenol and 3,5-bis(trifluoromethyl)phenol, mediated by singlet molecular oxygen, O2(1delta(g)), and hydrogen phosphate radicals were studied, employing time-resolved O2(1delta(g)) phosphorescence detection, polarographic determination of dissolved oxygen and flash photolysis. All the substrates are highly photo-oxidizable through a O2(1delta(g))-mediated mechanism. The phenols show overall quenching constants for O2(1delta(g)) of the order of 10(6) M(-1) s(-1) in D2O, while the values for the phenoxide ions in water range from 1.2 x 10(8) to 3.6 x 10(8) M(-1) s(-1). The effects of the pH and polarity of the medium on the kinetics of the photo-oxidative process suggest a charge-transfer mechanism. 2-Trifluoromethyl-1,4-benzoquinone is suspected to be the main photo-oxidation product for the substrate 3-TFMP. The absolute rate constants for the reactions of HPO4*- with the substrates range from 4 x 10(8) to 1 x 10(9) M(-1) s(-1). The 3-trifluoromethylphenoxyl radical was observed as the organic intermediate formed after reaction of 3-TFMP with HPO4*-, yielding 2,2'-bis(fluorohydroxymethyl)biphenyl-4,4'-diol as the end product. The observed results indicate that singlet molecular oxygen and hydrogen phosphate radicals not only react at different rates with the phenols of alpha,alpha,alpha-trifluorotoluene, but the reactions also proceed through different reaction channels.
RESUMEN
The enthalpy and volume changes, deltaH and deltaV, associated with the 266 nm laser-induced photoionization reactions of aqueous ferrocyanide and iodide ions, to yield the hydrated electron, e(-)aq, and oxidized products were determined by temperature-dependent time-resolved photoacoustics. The photoionization quantum yield as function of temperature (9-30 degrees C) was determined by laser flash photolysis actinometry. The obtained values were used for the calculation of thermodynamic parameters associated with the formation of e(-)aq, such as the apparent partial molar volume, V(o)e = 26 cm3 mol(-1), and the standard formation enthalpy and entropy changes, deltaH(o)f,e = 31 kJ mol(-1) and TdeltaS(o)f,e = 338 kJ mol(-1). These results indicate that the formation of the aqueous excess electron solution is governed by the increase in entropy in the three-dimensional hydrogen-bonding network of water.