Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 120(12): 3602-3611, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37691178

RESUMEN

Currently, there is a great need for the development of three-dimensional (3D) in vitro lung models. Particularly, the production of a suitable 3D model of pulmonary epithelium for understanding the pathophysiology of diseases such as the COVID-19 must consider the tissue architecture and presence, for example, of the angiotensin-converting enzyme-2 (ACE-2) in the cells. Different polymeric membranes are being used to support cell culturing, especially of lung cells, however, there is still no information about the culture of these cells onto bacterial nanocellulose (BNC) matrices. We have used the BNC matrix CellFate® as a support for the assembly of a 3D in vitro model of lung epithelium, composed of human lung fibroblasts (HLF) and lung adenocarcinoma cells (CALU-3). CellFate® matrices were made from bacterial fermentation resulting in a natural and biocompatible biopolymer. Cells were cultured onto CellFate® and maintained in a 5% CO2 humidified atmosphere at 37°C. Cell viability was assessed by the resazurin method The samples were, then, exposed to the air-liquid interface (ALI), and histologically analyzed. ACE-2 activity was verified on the hydrolyze of the fluorogenic substrate Mca-APK(Dnp)-OH, and its presence was evaluated by flow cytometry. The expression of the anionic transporter SLCO3A1 was evaluated by qPCR. Cell viability analysis indicates that CellFate® was not toxic to these cells. By flow cytometry, the presence of the ACE-2 was identified in the CALU-3 cells surface corroborating the results obtained from enzymatic activity analysis. The SLCO3A1 transporter expression was identified in cells cultured onto CellFate®, but not in cells cultured onto the transwell (control). CALU-3 cells cultivated onto CellFate® resulted in a pseudostratified organization, a typical morphology of the human respiratory tract epithelium. The current model opens perspectives for studies involving physiological characterization, improving its relevance for the understanding of the pathophysiology of diseases as well as the response to drugs.


Asunto(s)
Células Epiteliales , Pulmón , Humanos , Células Epiteliales/metabolismo , Células Cultivadas , Supervivencia Celular , Angiotensinas/metabolismo
2.
Biochim Biophys Acta Gen Subj ; 1866(9): 130183, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35661803

RESUMEN

BACKGROUND: Bacterial nanocellulose (BNC) has been used as cell support in numerous tissue engineering studies. Its use can be explained based on the fact its structure allows the creation of a required microenvironment for an ideal material, which supports 3D cell culture. Its structure and interconnected pores lead to animal cells adhesion and proliferation, also allowing oxygen and nutrients transportation. METHODS: We developed a new methodology to produce spherical platforms synthesized by Komagataebacter hansenii (ATCC 23769) under dynamic culture conditions in minimal medium. The chemical composition and physical properties of the platforms were evaluated. Then, human melanoma cells (SK-MEL-28) were encapsulated into the platforms and evaluated by metabolic activity, morphology and their ability on adhering to the Hollow Translucid BNC Spheres (BNC-TS-H) and Compartmentalized Translucid BNC Spheres (BNC-TS-C) up to 3 days. RESULTS: BNC-TS-H and BNC-TS-C platforms were produced as translucid spheroid platforms with distinct microenvironment under dynamic fermentation. The chemical and physical characterizations confirmed the platforms composition as BNC. The produced internal microenvironments in spherical platforms are relevant to determine tumor cell fate. In the first 12 h of culture, cells could adhere to nanocellulose microfibers assuming their typical tumorous phenotype in 72 h of culture. CONCLUSION: The dynamic fermentation in minimal medium produced distinct microstructured platforms of BNC-TS-H and BNC-TS-C. The platforms microstructure resulted in microenvironments that enabled distinct cell-cell and cell-matrix interactions. This behavior suggests several applications in tissue engineering. GENERAL SIGNIFICANCE: The method produced translucid BNC sphere platforms with distinct microenvironments for 3D cell culture.


Asunto(s)
Celulosa , Melanoma , Animales , Bacterias/metabolismo , Adhesión Celular , Celulosa/química , Ingeniería de Tejidos , Microambiente Tumoral
3.
Methods Mol Biol ; 2514: 163-176, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35771428

RESUMEN

Microvascular channel growth and inhibition, such as what occurs in vasculogenic mimicry, are generally represented in tables or shown in bar graphs. Although informative, those representations lack accurate predictions on dosage or the opportunity to report an unbiased metric when one wants to compare different signal dependence, for instance, the concentration of different drugs or enzymes or expression levels of particular genes.Mathematical model building is an exercise that makes you think of which are the key variables of a particular phenomenon and how they affect the targeting experimental output.Starting from early blood vessel formation and regression (number of vessels) due to an inducer/inhibitor effect, we show how a conceptual mathematical model may be built. As an example, the model was used to parameterize aloin bioactivity on a chick yolk sac membrane (YSM) assay with respect to its vasculogenic and vessel regression properties. A separable functional form where vessel formation and cell death occur as mutually exclusive concentration or signal-dependent functions showed that there was a good correlation with experimental data. Although an analytical solution for that simple case is presented, parameter determination and parametric analysis may be carried out numerically by solving the system of ordinary differential equations that represents the model using nonlinear regression for parameter determinations. Such model formulation thus allows for a more objective evaluation concentration dependence and is suggested as a novel method to evaluate blood vessel formation and inhibition as well as a general model for quantitative balance between chemical stimulation and toxicity.


Asunto(s)
Modelos Teóricos , Saco Vitelino , Matemática
4.
Microvasc Res ; 88: 1-11, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23538317

RESUMEN

The present study focuses on the effects of a hydro-alcoholic propolis extract collected in autumn (2010) in Santa Catarina State (Southern Brazil), on the angiogenesis, using in vitro and in vivo models. Cultures of human umbilical vein endothelial cells were used to assess the effects of propolis on viability, proliferation, and cell migration, as well as capillary tube formation. The propolis autumnal extracts significantly decreased the cell viability, based on CC50 values, which decreased (56%) from 297 to 130 µg/ml in 24 h and 72 h of treatment, respectively (cytotoxicity assay). The process of cell proliferation was decreased by 81.7 to 48.4% due to exposure (72 h) to 130-180 µg/ml of propolis extract, as compared with control (vehicle). In these same concentrations, the cell migration was also reduced by 39.6 to 12.6%, respectively (versus control). Furthermore, autumnal propolis extract (100-200 µg/ml) inhibited the tube-like structure formation (tubulogenesis) of endothelial cells on Matrigel™ (16.2-69.9% inhibition). The treatments performed in vivo with administration of 450 mg propolis.kg(-1) inhibited both angiogenesis and vasculogenesis by 82.3 and 66.5% in the chorioallantoic and yolk-sac membranes of chick embryos. Furthermore, by means of UV-vis-spectrophotometry, reverse phase-high performance liquid chromatography analysis and 1D and 2D-nuclear magnetic resonance experiments reveal higher contents of flavonoids and total phenolic compounds with predominance of the flavonol quercetin and the phenolic acids, e.g., gallic acid, protocatechuic acid and chlorogenic acid in the propolis hydro-alcoholic extract. Our findings related to the anti-proliferative, anti-migration, and anti-tubulogenic actions on human umbilical vein endothelial cell line agree with the inhibitory effects in the in vivo vessel formation exerted by propolis extract under study. The results also suggest that autumnal propolis extract might be potentially instrumental in providing alternative tools for angiogenic disease therapeutics.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Proliferación Celular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Própolis/farmacología , Animales , Brasil , Supervivencia Celular/efectos de los fármacos , Embrión de Pollo , Ácido Clorogénico/química , Membrana Corioalantoides/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Colágeno/química , Combinación de Medicamentos , Flavonas/química , Humanos , Hidroxibenzoatos/química , Laminina/química , Espectroscopía de Resonancia Magnética , Fenol/química , Proteoglicanos/química , Estaciones del Año , Espectrofotometría Ultravioleta , Factores de Tiempo
5.
J Pharmacol Sci ; 107(2): 118-27, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18566520

RESUMEN

Resveratrol is a stilbene compound found in grapes and other sources. In this study we examined the effects of trans-resveratrol (4.38 - 438 microM/implant) in the vasculogenesis of yolk-sac membranes and its capacity to improve chick embryo growth. High concentrations of the stilbene (43.8 - 438 microM) significantly inhibited early vessel formation, decreasing the percentage vitelline vessels of 3.5-day embryos by 50% compared to the control. In addition, basic fibroblast growth factor-stimulated vasculogenesis (140% of vessels as compared to control) was partially reversed by t-resveratrol (35% of inhibition) and treatments with cyclooxygenase inhibitors (acetylsalicylic acid and indomethacin) as well a protein-kinase C (PKC) activator (phorbol-12,13-dibutyrate) decreased the vessel number to 60%, 50%, and 44%, respectively. Treatments with t-resveratrol (4.38 - 43.8 microM/implant) significantly increased the body length of embryos incubated in vitro uncoupled from any impairment in the body shape or detectable embryotoxic effect. We suggest that the antivasculogenic activity and the enhancement in embryonic growth promoted by non acute treatments with t-resveratrol were, at least in part, due to PKC inhibition. We suggest that t-resveratrol can be usable not only as a reliable functional nutriment, but also is useful for the development of prophylactic and/or therapeutic agents for treatment of angiogenic-degenerative diseases.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Desarrollo Embrionario/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Estilbenos/farmacología , Animales , Embrión de Pollo , Factor 2 de Crecimiento de Fibroblastos/farmacología , Forbol 12,13-Dibutirato/farmacología , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/fisiología , Resveratrol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA