RESUMEN
BACKGROUND: New sequencing technologies have opened the way to the discovery and the characterization of pathogenic viruses in clinical samples. However, the use of these new methods can require an amplification of viral RNA prior to the sequencing. Among all the available methods, the procedure based on the use of Phi29 polymerase produces a huge amount of amplified DNA. However, its major disadvantage is to generate a large number of chimeric sequences which can affect the assembly step. The pre-process method proposed in this study strongly limits the negative impact of chimeric reads in order to obtain the full-length of viral genomes. FINDINGS: Three different assembly softwares (ABySS, Ray and SPAdes) were tested for their ability to correctly assemble the full-length of viral genomes. Although in all cases, our pre-processed method improved genome assembly, only its combination with the use of SPAdes allowed us to obtain the full-length of the viral genomes tested in one contig. CONCLUSIONS: The proposed pipeline is able to overcome drawbacks due to the generation of chimeric reads during the amplification of viral RNA which considerably improves the assembling of full-length viral genomes.
Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Genoma Viral , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN Viral , Análisis de Secuencia de ARN/métodos , Ensamble de Virus , Alphavirus/genética , República Centroafricana , Biología Computacional , Mapeo Contig , Mengovirus/genética , Valores de Referencia , Reproducibilidad de los Resultados , Programas InformáticosRESUMEN
BACKGROUND: New sequencing technologies have opened the way to the discovery and the characterization of pathogenic viruses in clinical samples. However, the use of these new methods can require an amplification of viral RNA prior to the sequencing. Among all the available methods, the procedure based on the use of Phi29 polymerase produces a huge amount of amplified DNA. However, its major disadvantage is to generate a large number of chimeric sequences which can affect the assembly step. The pre-process method proposed in this study strongly limits the negative impact of chimeric reads in order to obtain the full-length of viral genomes. FINDINGS: Three different assembly softwares (ABySS, Ray and SPAdes) were tested for their ability to correctly assemble the full-length of viral genomes. Although in all cases, our pre-processed method improved genome assembly, only its combination with the use of SPAdes allowed us to obtain the full-length of the viral genomes tested in one contig. CONCLUSIONS: The proposed pipeline is able to overcome drawbacks due to the generation of chimeric reads during the amplification of viral RNA which considerably improves the assembling of full-length viral genomes.
Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , ARN Viral , Genoma Viral , Análisis de Secuencia de ARN/métodos , Ensamble de Virus , Técnicas de Amplificación de Ácido Nucleico/métodos , Valores de Referencia , Programas Informáticos , República Centroafricana , Reproducibilidad de los Resultados , Alphavirus/genética , Mengovirus/genética , Biología Computacional , Mapeo ContigRESUMEN
OBJECTIVES: The objective was to study a new vanG-type locus in Clostridium argentinense vanGCar and to determine its impact on glycopeptide susceptibility of the host. METHODS: The whole genome of C. argentinense NCIB 10714 was sequenced using Illumina single-reads sequencing technology. The presence of vanGCar in seven C. argentinense strains was tested by PCR and its expression was tested by quantitative RT-PCR (qRT-PCR). Glycopeptide susceptibility was determined by the Etest procedure. RESULTS: The vanGCar locus contained four genes encoding a carboxypeptidase, a d-alanine:d-serine ligase, a serine transporter and a serine racemase, and was present in the seven C. argentinense studied. An AraC-type transcriptional regulator was found upstream from the genes. C. argentinense NCIB 10714 was susceptible to vancomycin and to teicoplanin. qRT-PCR experiments revealed that vanGCar was not expressed without or with induction by a subinhibitory concentration of vancomycin. CONCLUSIONS: The new vanGCar locus was cryptic in C. argentinense and intrinsic to this species. Emergence of vancomycin resistance in C. argentinense due to decryptification of the vanGCar gene cluster could occur.