Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Magn Reson Med ; 91(3): 1254-1267, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37986237

RESUMEN

PURPOSE: We propose a comprehensive workflow to design and build fully customized dense receive arrays for MRI, providing prediction of SNR and g-factor. Combined with additive manufacturing, this method allows an efficient implementation for any arbitrary loop configuration. To demonstrate the methodology, an innovative two-layer, 32-channel receive array is proposed. METHODS: The design workflow is based on numerical simulations using a commercial 3D electromagnetic software associated with circuit model co-simulations to provide the most accurate results in an efficient time. A model to compute the noise covariance matrix from circuit model scattering parameters is proposed. A 32-channel receive array at 7 T is simulated and fabricated with a two-layer design made of non-geometrically decoupled loops. Decoupling between loops is achieved using home-built direct high-impedance preamplifiers. The loops are 3D-printed with a new additive manufacturing technique to speed up integration while preserving the detailed geometry as simulated. The SNR and parallel-imaging performances of the proposed design are compared with a commercial coil, and in vivo images are acquired. RESULTS: The comparison of SNR and g-factors showed a good agreement between simulations and measurements. Experimental values are comparable with the ones measured on the commercial coil. Preliminary in vivo images also ensured the absence of any unexpected artifacts. CONCLUSION: A new design and performance analysis workflow is proposed and tested with a non-conventional 32-channel prototype at 7 T. Additive manufacturing of dense arrays of loops for brain imaging at ultrahigh field is validated for clinical use.


Asunto(s)
Imagen por Resonancia Magnética , Neuroimagen , Fantasmas de Imagen , Diseño de Equipo , Relación Señal-Ruido , Imagen por Resonancia Magnética/métodos , Fenómenos Electromagnéticos , Encéfalo/diagnóstico por imagen
2.
Magn Reson Med ; 86(4): 2290-2300, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34080734

RESUMEN

PURPOSE: To theoretically describe, design, and test the new geometry of the birdcage coil for 7 Tesla anatomical brain imaging, which includes a large window on top, without deliberately jeopardizing its homogeneity and efficiency. This opencage will not only improve patient comfort but also enable the volunteer to follow functional MRI stimuli. This design could also facilitate the tracking of patient compliance and enable better correction of the movement. METHODS: Via the transfer matrix approach, a birdcage-like coil with a nonperiodic distribution of rungs is constructed with optimized currents in the coil rungs. Subsequently, the coil is adjusted in full-wave simulations. Then, the coil is assembled, fine-tuned, and matched on the bench. Finally, these results are confirmed experimentally on a phantom and in vivo. RESULTS: Indeed, the computed isolation of -14.9 dB between the feeding ports of the coil and the symmetry of the circular polarized mode pattern transmit RF magnetic field ( B1+ ) showed that the coil was properly optimized. An experimental assessment of the developed coil showed competitive transmit efficiency and coverage compared with the conventional birdcage coil of similar size. CONCLUSION: The proposed opencage coil can be designed and work without a dramatic drop of performance in terms of the B1+ field homogeneity, transmit efficiency ( B1+ / Pref ), peak local specific absorption rate ( SAR10g ) and SAR efficiency ( B1+ / SAR10g ).


Asunto(s)
Cabeza , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Diseño de Equipo , Cabeza/diagnóstico por imagen , Humanos , Fantasmas de Imagen
3.
Sci Rep ; 8(1): 9190, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29907834

RESUMEN

In this paper, we propose, design and test a new dual-nuclei RF-coil inspired by wire metamaterial structures. The coil operates as a result of resonant excitation of hybridized eigenmodes in multimode flat periodic structures comprising several coupled thin metal strips. It was shown that the field distribution of the coil (i.e. penetration depth) can be controlled independently at two different Larmor frequencies by selecting a proper eigenmode in each of two mutually orthogonal periodic structures. The proposed coil requires no lumped capacitors to be tuned and matched. In order to demonstrate the performance of the new design, an experimental preclinical coil for 19F/1H imaging of small animals at 7.05T was engineered and tested on a homogeneous liquid phantom and in-vivo. The results demonstrate that the coil was both well tuned and matched at two Larmor frequencies and allowed image acquisition at both nuclei. In an in-vivo experiment, it was shown that without retuning the setup it was subsequently possible to obtain anatomical 1H images of a mouse under anesthesia with 19F images of a tiny tube filled with a fluorine-containing liquid and attached to the body of the mouse.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA