Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Sci Food Agric ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031483

RESUMEN

BACKGROUND: Crustaceans of the superfamily Penaeoidea (e.g., shrimps and prawns) are among the most commercially available aquatic products worldwide. However, there are few studies regarding not only the presence but also the characteristics of mislabelling in these food products. Such information would be helpful for consumers in order to avoid the typical problems associated with mislabelling (e.g., health and economic issues). For this reason, this work considers Penaeoidea mislabelling by comparing different products (frozen, fresh, boiled), and sources (hypermarkets, supermarkets and fishmongers) from Spain (Europe). RESULTS: A total of 94 samples from 55 different products were collected, representing 19 different species from 13 genera. Mitochondrial DNA (COI gene) was amplified, revealing mislabelling in almost 30% of supermarket products and almost exclusively found in frozen samples (95% of the total) regardless of its price. In addition, products from the Pacific Ocean seem to be particularly susceptible to mislabelling. CONCLUSIONS: All in all, recommendations for the consumer in order to avoid mislabelling of prawns include purchasing them fresh from fishmongers; aquaculture products must not be avoided. This study represents, to our knowledge, the first attempt to provide recommendations to consumers based on DNA analyses in order to avoid mislabelling in food products. Further research is therefore required to provide such recommendations in different food products, particularly those that are processed, packaged and/or frozen. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
Sci Rep ; 9(1): 2961, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30814521

RESUMEN

Spinosad is an insecticide widely used for the control of insect pest species, including Mediterranean fruit fly, Ceratitis capitata. Its target site is the α6 subunit of the nicotinic acetylcholine receptors, and different mutations in this subunit confer resistance to spinosad in diverse insect species. The insect α6 gene contains 12 exons, with mutually exclusive versions of exons 3 (3a, 3b) and 8 (8a, 8b, 8c). We report here the selection of a medfly strain highly resistant to spinosad, JW-100 s, and we identify three recessive Ccα6 mutant alleles in the JW-100 s population: (i) Ccα63aQ68* containing a point mutation that generates a premature stop codon on exon 3a (3aQ68*); (ii) Ccα63aAG>AT containing a point mutation in the 5' splicing site of exon 3a (3aAG > AT); and (iii) Ccα63aQ68*-K352* that contains the mutation 3aQ68* and another point mutation on exon 10 (K352*). Though our analysis of the susceptibility to spinosad in field populations indicates that resistance has not yet evolved, a better understanding of the mechanism of action of spinosad is essential to implement sustainable management practices to avoid the development of resistance in field populations.


Asunto(s)
Ceratitis capitata/genética , Resistencia a los Insecticidas/genética , Receptores Nicotínicos/genética , Secuencia de Aminoácidos , Animales , Codón de Terminación/genética , Combinación de Medicamentos , Exones/genética , Proteínas de Insectos/genética , Insectos/genética , Insecticidas/farmacología , Macrólidos/metabolismo , Mutación/genética , Mutación Puntual , Sitios de Empalme de ARN/genética , Receptores Nicotínicos/metabolismo
3.
J Econ Entomol ; 104(4): 1349-56, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21882703

RESUMEN

Resistance to malathion has been reported in field populations of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), in areas of Spain where an intensive use of this insecticide was maintained for several years. The main goal of this study was to determine whether resistance to malathion confers cross-resistance to different types of insecticides. Susceptibility bioassays showed that the malathion-resistant W-4Km strain (176-fold more resistant to malathion than the susceptible C strain) has moderate levels of cross-resistance (three- to 16-fold) to other organophosphates (trichlorphon, diazinon, phosmet and methyl-chlorpyrifos), the carbamate carbaryl, the pyrethroid lambda-cyhalothrin, and the benzoylphenylurea derivative lufenuron, whereas cross-resistance to spinosad was below two-fold. The W-4Km strain was selected with lambda-cyhalothrin to establish the lambda-cyhalothrin-resistant W-1Klamda strain (35-fold resistant to lambda-cyhalothrin). The synergistic activity of the esterase inhibitor DEF with lambda-cyhalothrin and the increase in esterase activity in the W-1Klamda strain suggests that esterases may be involved in the development of resistance to this insecticide. Our results showed that resistance to malathion may confer some degree of cross-resistance to insecticides currently approved for the control of Mediterranean fruit fly in citrus crops (lambda-cyhalothrin, lufenuron, and methyl-chlorpyrifos). Especially relevant is the case of lambda-cyhalothrin, because we have shown that resistance to this insecticide can rapidly evolve to levels that may compromise its effectiveness in the field.


Asunto(s)
Ceratitis capitata , Insecticidas , Malatión , Nitrilos , Piretrinas , Animales , Ceratitis capitata/genética , Resistencia a Múltiples Medicamentos , Resistencia a los Insecticidas/genética , Organotiofosfatos , Sinergistas de Plaguicidas , Selección Genética
4.
Environ Entomol ; 37(5): 1354-60, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19036216

RESUMEN

The Mediterranean corn borer, Sesamia nonagrioides (Lefebvre) (Lepidoptera: Noctuidae), is a major pest of maize in the Mediterranean area. Transgenic Bt maize expressing the Cry1Ab toxin from the bacterium Bacillus thuringiensis can effectively control this pest. The characterization of S. nonagrioides population structure, at a large geographical scale, would provide some insight in decision making for resistance management. The genetic relationships among nine populations from Spain, one from France, one from Italy, three from Greece, and one from Turkey were assessed using Random Amplyfied Polymorphic DNA (RAPD) markers. Populations from France and Spain formed a cluster independent from a cluster of populations collected in Italy, Turkey, and Greece in a unweighted pair-group method with arithmetic average dendrogram constructed from Nei's genetic distances. Average genetic differentiation among samples was significant for all geographical groupings analyzed (F (ST) = 0.160 +/- 0.014 for Spanish populations; 0.133 +/- 0.022 for Spanish and French populations; and 0.095 +/- 0.010 for Greek, Italian, and Turkish populations). Genetic differentiation was also significant for all paired comparisons of populations, including two Spanish populations separated by only 15 km with no apparent geographical barriers. No pattern of isolation by distance was observed among Mediterranean corn borer populations collected in Spain and France. These results suggest a limited genetic exchange between relatively distant S. nonagrioides populations in Europe, which might contribute to decreased rate of spread of resistance alleles once resistance has developed at a certain site.


Asunto(s)
Flujo Génico , Genética de Población , Mariposas Nocturnas/genética , Animales , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas , Endotoxinas , Proteínas Hemolisinas , Resistencia a los Insecticidas/genética , Región Mediterránea , Reacción en Cadena de la Polimerasa , Técnica del ADN Polimorfo Amplificado Aleatorio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA