Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neoplasia ; 15(12): 1330-46, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24403855

RESUMEN

Nontransformed breast epithelial cells that are adjacent to tumor cells are constantly exposed to tumor necrosis factor-α (TNFα) and interleukin-1ß (IL-1ß), two inflammatory cytokines identified as having pro-tumoral causative roles. We show that continuous stimulation of nontransformed breast epithelial cells by TNFα + IL-1ß for 2 to 3 weeks induced their spreading and epithelial-to-mesenchymal transition (EMT). The mechanistic bases for this slow induction of EMT by TNFα + IL-1ß are: 1) it took 2 to 3 weeks for the cytokines to induce the expression of the EMT activators Zeb1 and Snail; 2) although Twist has amplified the EMT-inducing activities of Zeb1 + Snail, its expression was reduced by TNFα + IL-1ß; however, the lack of Twist was compensated by prolonged stimulation with TNFα + IL-1ß that has potentiated the EMT-inducing activities of Zeb1 + Snail. Stimulation by TNFα + IL-1ß has induced the following dissemination-related properties in the nontransformed cells: 1) up-regulation of functional matrix metalloproteinases; 2) induction of migratory and invasive capabilities; 3) disruption of the normal phenotype of organized three-dimensional acini structures typically formed only by nontransformed breast cells and spreading of nontransformed cells out of such acini. Our findings suggest that TNFα + IL-1ß induce dissemination of nontransformed breast epithelial cells and their reseeding at the primary tumor site; if, then, such detached cells are exposed to transforming events, they may form secondary malignant focus and lead to disease recurrence. Thus, our study reveals novel pathways through which the inflammatory microenvironment may contribute to relapsed disease in breast cancer.


Asunto(s)
Neoplasias de la Mama/patología , Células Epiteliales/fisiología , Transición Epitelial-Mesenquimal , Interleucina-1beta/fisiología , Microambiente Tumoral , Factor de Necrosis Tumoral alfa/fisiología , Línea Celular Tumoral , Forma de la Célula , Transformación Celular Neoplásica , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Mediadores de Inflamación/fisiología , Glándulas Mamarias Humanas/patología , Invasividad Neoplásica , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA