Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Materials (Basel) ; 17(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38541579

RESUMEN

A favorable environment for fungi colonization in building materials' surfaces can emerge when certain hygrothermal conditions occur. Thus, reducing fungal growth susceptibility is of major interest. Furthermore, if the integration of bio-wastes is performed in parallel with the development of innovative materials for this purpose, a more sustainable and environmentally friendly material can be obtained. In this study, the fungal susceptibility of lime mortars incorporating almond-shell powder (ASP) microparticles (2 and 4%, wt.-wt. in relation to the binder content) was evaluated. The particle-dispersion technique was employed to prepare the bio-waste introduced in the mixtures. The fungal susceptibility of ASP samples was compared with nanotitania (n-TiO2) with recognized antifungal properties. Mechanical strength, water absorption, and wettability tests were also performed for a better characterization of the composites. Although the addition of 2% ASP led to mechanical properties reduction, an increase in the compressive and flexural strength resulted for 4% of the ASP content. Difficulties in fungal growth were observed for the samples incorporating ASP. No fungal development was detected in the mortar with 2% of ASP, which may be correlated with an increase in the surface hydrophobic behavior. Furthermore, mortars with ASP revealed a reduction in water absorption by capillarity ability, especially with 4% content, suggesting changes in the microstructure and pore characteristics. The results also demonstrated that an improvement in the physical and mechanical properties of the lime mortars can be achieved when ASP microparticles are previously subjected to dispersion techniques.

3.
ACS Appl Mater Interfaces ; 15(27): 32301-32312, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37379238

RESUMEN

Renewable energy sources require efficient energy storage systems. Lithium-ion batteries stand out among those systems, but safety and cycling stability problems still need to be improved. This can be achieved by the implementation of solid polymer electrolytes (SPE) instead of the typically used separator/electrolyte system. Thus, ternary SPEs have been developed based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene), P(VDF-TrFE-CFE) as host polymers, clinoptilolite (CPT) zeolite added to stabilize the battery cycling performance, and ionic liquids (ILs) (1-butyl-3-methylimidazolium thiocyanate ([BMIM][SCN])), 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([PMPyr][TFSI]) or lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), incorporated to increase the ionic conductivity. The samples were processed by doctor blade with solvent evaporation at 160 °C. The nature of the polymer matrix and fillers affect the morphology and mechanical properties of the samples and play an important role in electrochemical parameters such as ionic conductivity value, electrochemical window stability, and lithium-transference number. The best ionic conductivity (4.2 × 10-5 S cm-1) and lithium transference number (0.59) were obtained for the PVDF-HFP-CPT-[PMPyr][TFSI] sample. Charge-discharge battery tests at C/10 showed excellent battery performance with values of 150 mAh g-1 after 50 cycles, regardless of the polymer matrix and IL used. In the rate performance tests, the best SPE was the one based on the P(VDF-TrFE-CFE) host polymer, with a discharge value at C-rate of 98.7 mAh g-1, as it promoted ionic dissociation. This study proves for the first time the suitability of P(VDF-TrFE-CFE) as SPE in lithium-ion batteries, showing the relevance of the proper selection of the polymer matrix, IL type, and lithium salt in the formulation of the ternary SPE, in order to optimize solid-state battery performance. In particular, the enhancement of the ionic conductivity provided by the IL and the effect of the high dielectric constant polymer P(VDF-TrFE-CFE) in improving battery cyclability in a wide range of discharge rates must be highlighted.

4.
ACS Appl Energy Mater ; 6(10): 5239-5248, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37234969

RESUMEN

Solid polymer electrolytes (SPEs) will allow improving safety and durability in next-generation solid-state lithium-ion batteries (LIBs). Within the SPE class, ternary composites are a suitable approach as they provide high room-temperature ionic conductivity and excellent cycling and electrochemical stability. In this work, ternary SPEs based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) as a polymer host, clinoptilolite (CPT) zeolite, and 1-butyl-3-methylimidazolium thiocyanate ([Bmim][SCN])) ionic liquid (IL) as fillers were produced by solvent evaporation at different temperatures (room temperature, 80, 120, and 160 °C). Solvent evaporation temperature affects the morphology, degree of crystallinity, and mechanical properties of the samples as well as the ionic conductivity and lithium transference number. The highest ionic conductivity (1.2 × 10-4 S·cm-1) and lithium transference number (0.66) have been obtained for the SPE prepared at room temperature and 160 °C, respectively. Charge-discharge battery tests show the highest value of discharge capacity of 149 and 136 mAh·g-1 at C/10 and C/2 rates, respectively, for the SPE prepared at 160 °C. We conclude that the fine control of the solvent evaporation temperature during the preparation of the SPE allows us to optimize solid-state battery performance.

5.
Molecules ; 29(1)2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38202714

RESUMEN

Hydrogels are characterized by their property of absorbing and releasing a high content of water and water-based liquids; thus, they can be applied in agriculture as controlled-release water and fertilizer products. The focus of this research was efficient and low-cost natural polymer-based hydrogels obtained by crosslinking gellan gum (GGLA) and starch (ST) with acetic acid (CA) and loading them with either bentonite (BET) and/or halloysite (HAL). The hydrogels were obtained by mixing 100, 75, 50, 25, and 0 wt.% of GGLA with 0, 25, 50, 75, and 100 wt.% ST water solutions. To obtain the networks, they were crosslinked with 10, 5, and 2 wt.% of CA and loaded with 2, 5, and 10 wt.% of BET and/or HAL. The samples were analyzed by infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), their swelling in water, and the state of bound water properties. The results of these analyses point to the formation of a polymeric network with a decomposition temperature of >250 °C, and tailorable swelling properties that vary between 3 and 77, depending on the hydrogel composition. In summary, GGLA-ST-BET/HAL hydrogels are a good option for eco-friendly agriculture materials.

6.
Front Plant Sci ; 13: 999252, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275521

RESUMEN

Arundo donax L. (Arundinoideae subfamily, Poaceae family) is a sub-tropical and temperate climate reed that grows in arid and semi-arid environmental conditions, from eastern China to the Mediterranean basin, suggesting potential adaptations at the epicuticular level. A thorough physical-chemical examination of the adaxial and abaxial surfaces of A. donax leaf was performed herein in an attempt to track such chemophenetic adaptations. This sort of approach is of the utmost importance for the current debate about the hypothetical invasiveness of this species in the Mediterranean basin versus its natural colonization along the Plio-Pleistocene period. We concluded that the leaf surfaces contain, apart from stomata, prickles, and long, thin trichomes, and silicon-rich tetralobate phytolits. Chemically, the dominating elements in the leaf ashes are oxygen and potassium; minor amounts of calcium, silicon, magnesium, phosphorous, sulphur, and chlorine were also detected. In both surfaces the epicuticular waxes (whose density is higher in the adaxial surface than in the abaxial surface) form randomly orientated platelets, with irregular shape and variable size, and aggregated rodlets with variable diameter around the stomata. In the case of green mature leaves, the dominating organic compounds of the epicuticular waxes of both surfaces are triterpenoids. Both surfaces feature identical hydrophobic behaviour, and exhibit the same total transmittance, total reflectance, and absorption of incident light. The above findings suggest easy growth of the plant, remarkable epidermic robustness of the leaf, and control of water loss. These chemophenetic characteristics and human influence support a neolithization process of this species along the Mediterranean basin.

7.
PLoS One ; 17(9): e0273078, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36070304

RESUMEN

A growing number of studies suggest that climate may impact the spread of COVID-19. This hypothesis is supported by data from similar viral contagions, such as SARS and the 1918 Flu Pandemic, and corroborated by US influenza data. However, the extent to which climate may affect COVID-19 transmission rates and help modeling COVID-19 risk is still not well understood. This study demonstrates that such an understanding is attainable through the development of regression models that verify how climate contributes to modeling COVID-19 transmission, and the use of feature importance techniques that assess the relative weight of meteorological variables compared to epidemiological, socioeconomic, environmental, and global health factors. The ensuing results show that meteorological factors play a key role in regression models of COVID-19 risk, with ultraviolet radiation (UV) as the main driver. These results are corroborated by statistical correlation analyses and a panel data fixed-effect model confirming that UV radiation coefficients are significantly negatively correlated with COVID-19 transmission rates.


Asunto(s)
COVID-19 , Gripe Humana , COVID-19/epidemiología , Clima , Cambio Climático , Humanos , Rayos Ultravioleta/efectos adversos
8.
Polymers (Basel) ; 14(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35956612

RESUMEN

Water pollution due to global economic activity is one of the greatest environmental concerns, and many efforts are currently being made toward developing materials capable of selectively and efficiently removing pollutants and contaminants. A series of ß-ketoenamine covalent organic frameworks (COFs) have been synthesized, by reacting 1,3,5-triformylphloroglucinol (TFP) with different C2-functionalized and nonfunctionalized diamines, in order to evaluate the influence of wall functionalization and pore size on the adsorption capacity toward dye and heavy metal pollutants. The obtained COFs were characterized by different techniques. The adsorption of methylene blue (MB), which was used as a model for the adsorption of pharmaceuticals and dyes, was initially evaluated. Adsorption studies showed that -NO2 and -SO3H functional groups were favorable for MB adsorption, with TpBd(SO3H)2-COF [100%], prepared between TFP and 4,4'-diamine- [1,1'-biphenyl]-2,2'-disulfonic acid, achieving the highest adsorption capacity (166 ± 13 mg g-1). The adsorption of anionic pollutants was less effective and decreased, in general, with the increase in -SO3H and -NO2 group content. The effect of ionic interactions on the COF performance was further assessed by carrying out adsorption experiments involving metal ions. Isotherms showed that nonfunctionalized and functionalized COFs were better described by the Langmuir and Freundlich sorption models, respectively, confirming the influence of functionalization on surface heterogeneity. Sorption kinetics experiments were better adjusted according to a second-order rate equation, confirming the existence of surface chemical interactions in the adsorption process. These results confirm the influence of selective COF functionalization on adsorption processes and the role of functional groups on the adsorption selectivity, thus clearly demonstrating the potential of this new class of materials in the efficient and selective capture and removal of pollutants in aqueous solutions.

9.
Front Plant Sci ; 13: 890647, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860538

RESUMEN

Classically, vicariant phenomena have been essentially identified on the basis of biogeographical and ecological data. Here, we report unequivocal evidences that demonstrate that a physical-chemical characterization of the epicuticular waxes of the surface of plant leaves represents a very powerful strategy to get rich insight into vicariant events. We found vicariant similarity between Cercis siliquastrum L. (family Fabaceae, subfamily Cercidoideae) and Ceratonia siliqua L. (family Fabaceae, subfamily Caesalpinoideae). Both taxa converge in the Mediterranean basin (C. siliquastrum on the north and C. siliqua across the south), in similar habitats (sclerophyll communities of maquis) and climatic profiles. These species are the current representation of their subfamilies in the Mediterranean basin, where they overlap. Because of this biogeographic and ecological similarity, the environmental pattern of both taxa was found to be very significant. The physical-chemical analysis performed on the epicuticular waxes of C. siliquastrum and C. siliqua leaves provided relevant data that confirm the functional proximity between them. A striking resemblance was found in the epicuticular waxes of the abaxial surfaces of C. siliquastrum and C. siliqua leaves in terms of the dominant chemical compounds (1-triacontanol (C30) and 1-octacosanol (C28), respectively), morphology (intricate network of randomly organized nanometer-thick and micrometer-long plates), wettability (superhydrophobic character, with water contact angle values of 167.5 ± 0.5° and 162 ± 3°, respectively), and optical properties (in both species the light reflectance/absorptance of the abaxial surface is significantly higher/lower than that of the adaxial surface, but the overall trend in reflectance is qualitatively similar). These results enable us to include for the first time C. siliqua in the vicariant process exhibited by C. canadensis L., C. griffithii L., and C. siliquastrum.

10.
ACS Appl Bio Mater ; 5(6): 2556-2566, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35537179

RESUMEN

Silk from Bombyx mori is one of the most exciting materials in nature. The apparently simple arrangement of its two major components─two parallel filaments of silk fibroin (SF) coated by a common sericin (SS) sheath─provides a combination of mechanical and surface properties that can protect the moth during its most vulnerable phase, the pupal stage. Here, we recapitulate the topology of native silk fibers but shape them into three-dimensional porous constructs using an unprecedented design strategy. We demonstrate, for the first time, the potential of these macroporous silk foams as dermal patches for wound protection and for the controlled delivery of Rifamycin (Rif), a model antibiotic. The method implies (i) removing SS from silk fibers; (ii) shaping SF solutions into macroporous foams via ice-templating; (iii) stabilizing the SF macroporous foam in a methanolic solution of Rif; and (iv) coating Rif-loaded SF foams with a SS sheath. The resulting SS@SF foams exhibit water wicking capacity and accommodate up to ∼20% deformation without detaching from a skin model. The antibacterial behavior of Rif-loaded SS@SF foams against Staphylococcus aureus on agar plates outperforms that of SF foams (>1 week and 4 days, respectively). The reassembly of natural materials as macroporous foams─illustrated here for the reconstruction of silk-based materials─can be extended to other multicomponent natural materials and may play an important role in applications where controlled release of molecules and fluid transport are pivotal.


Asunto(s)
Fibroínas , Sericinas , Animales , Antibacterianos/farmacología , Biomimética , Hielo , Seda
11.
Nano Lett ; 21(23): 9853-9861, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34807626

RESUMEN

Animal testing is often criticized due to ethical issues and complicated translation of the results obtained to the clinical stage of drug development. Existing alternative models for nanopharmaceutical testing still have many limitations and do not significantly decrease the number of animals used. We propose a simple, bioinspired in vitro model for nanopharmaceutical drug testing based on the decellularized spinach leaf's vasculature. This system is similar to human arterioles and capillaries in terms of diameter (300-10 µm) and branching. The model has proven its suitability to access the maneuverability of magnetic nanoparticles, particularly those composed of Fe3O4. Moreover, the thrombosis has been recreated in the model's vasculature. We have tested and compared the effects of both a single-chain urokinase plasminogen activator (scuPA) and a magnetically controlled nanocomposite prepared by heparin-mediated cross-linking of scuPA with Fe3O4 nanoparticles. Compositions were tested both in static and flow conditions.


Asunto(s)
Investigación Biomédica/métodos , Nanomedicina , Spinacia oleracea , Animales , Encéfalo/metabolismo , Humanos , Hojas de la Planta/metabolismo , Spinacia oleracea/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/farmacología
12.
ACS Appl Mater Interfaces ; 13(41): 48889-48900, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34636238

RESUMEN

The demand for more efficient energy storage devices has led to the exponential growth of lithium-ion batteries. To overcome the limitations of these systems in terms of safety and to reduce environmental impact, solid-state technology emerges as a suitable approach. This work reports on a three-component solid polymer electrolyte system based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), the ionic liquid 1-butyl-3-methylimidazolium thiocyanate ([BMIM][SCN]), and clinoptilolite zeolite (CPT). The influences of the preparation method and of the dopants on the electrolyte stability, ionic conductivity, and battery performance were studied. The developed electrolytes show an improved room temperature ionic conductivity (1.9 × 10-4 S cm-1), thermal stability (up to 300 °C), and mechanical stability. The corresponding batteries exhibit an outstanding room temperature performance of 160.3 mAh g-1 at a C/15-rate, with a capacity retention of 76% after 50 cycles. These results represent a step forward in a promising technology aiming the widespread implementation of solid-state batteries.

13.
14.
Small ; 16(28): e1907661, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32462808

RESUMEN

Non-Newtonian nanofluids present outstanding features in terms of energy transfer and conductivity with high application in numerous areas. In this work, non-Newtonian nanofluids based on carbon dots (Cdots) functionalized with ionic liquids (ILs) are developed. The nanofluids are produced using a simple, single-step method where the raw materials for the Cdots synthesis are glucose and waste biomass (chitin from crab shells). The use of ILs as both reaction media and functionalization molecules allows for the development of a new class of nanofluids, where the ILs on the Cdots surface represent the base-fluid. Here, the well-known benign IL 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) and a novel home-made IL (1-tosylate-3-methyl-imidazolium triflate) [Tmi][Trif] are used. The nanofluids obtained from both substrates show, apart from high conductivity and viscosity, light absorption, and good wettability, an appealing thermal sensitivity behavior. This thermal sensitivity is preserved even when applied as thin films on glass slides and can be boosted using the surface plasmon resonance effect. The results reported demonstrate that the new Cdots/IL-based nanofluids constitute a versatile and cost-effective route for achieving high-performance thermosensitive non-Newtonian sustainable nanofluids with tremendous potential for the energy coatings sector and heat transfer film systems.


Asunto(s)
Líquidos Iónicos , Carbono , Conductividad Eléctrica , Imidazoles , Viscosidad
15.
Polymers (Basel) ; 12(5)2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32456102

RESUMEN

This work reports on the development of bending actuators based on poly(l-lactic acid) (PLLA)/ionic liquid (IL) blends, through the incorporation of 40% wt. of the 1-ethyl-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim][TFSI]) IL. The films, obtained by solvent casting at room temperature and 50 °C, were subjected to several post-thermal treatments at 70, 90, 120 and 140 °C, in order to modify the crystallinity of the films. The influence of the drying temperature and of [Emim][TFSI] blending on the morphological, structural, mechanical and electrical properties of the composite materials were studied. The IL induced the formation of a porous surface independently of the processing conditions. Moreover, the [Emim][TFSI] dopant and the post-thermal treatments at 70 °C promoted an increase of the degree of crystallinity of the samples. No significant changes were observed in the degree of crystallinity and Young Modulus for samples with thermal treatment between 70 and 140 °C. The viability of the developed high ionic conductive blends for applications as soft actuators was evaluated. A maximum displacement of 1.7 mm was achieved with the PLLA/[Emim][TFSI] composite prepared at 50 °C and thermally treated at 140 °C, for an applied voltage of 10 Vpp, at a frequency of 100 mHz. This work highlights interesting avenues for the use of PLLA in the field of actuators.

16.
Biomacromolecules ; 20(11): 4107-4116, 2019 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-31573794

RESUMEN

Bombyx mori L. silk fibroin (SF) is widely used in different areas due to its ability to form durable and resilient materials with notable mechanical properties. However, in some of these applications the dissolution of SF is required, and this is not often straightforward due to its inability to be dissolved in the majority of common solvents. This work reports a novel approach to dissolve SF using 40 wt % aqueous tetrabutylammonium hydroxide, TBAOH(aq), at mild temperature. A thorough rheological study combined with small-angle X-ray scattering is presented to correlate the SF state in solution with changes in the rheological parameters. The scattering data suggest that the SF conformation in TBAOH(aq) is close to a random coil, possibly having some compact domains linked with flexible random chains. The radius of gyration (Rg) and the molecular weight (Mw) were estimated to be ca. 17.5 nm and 450 kDa, respectively, which are in good agreement with previous works. Nevertheless, a lower Mw value was deduced from rheometry (i.e., 321 kDa) demonstrating a low degree of depolymerization during dissolution in comparison to other harsh processes. The transition from a dilute to a semidilute regime coincides with the estimated critical concentration and is marked by the presence of a shear-thinning behavior in the flow curves, violation of the empirical Cox-Merz rule, and an upward increase in the activation energy. This work paves the way toward the development of advanced high-tech SF-based materials.


Asunto(s)
Fibroínas/química , Compuestos de Amonio Cuaternario/química , Soluciones , Solventes/química , Animales , Bombyx/química , Conformación Molecular , Reología , Solubilidad , Soluciones/química , Temperatura , Agua/química
17.
18.
ACS Omega ; 3(9): 10811-10822, 2018 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-30320252

RESUMEN

New mesoporous silk fibroin (SF)/silica hybrids were processed via a one-pot soft and energy-efficient sol-gel chemistry and self-assembly from a silica precursor, an acidic or basic catalyst, and the ionic liquid 1-butyl-3-methylimidazolium chloride, acting as both solvent and mesoporosity-inducer. The as-prepared materials were obtained as slightly transparent-opaque, amorphous monoliths, easily transformed into powders, and stable up to ca. 300 °C. Structural data suggest the formation of a hexagonal mesostructure with low range order and apparent surface areas, pore volumes, and pore radii of 205-263 m2 g-1, 0.16-0.19 cm3 g-1, and 1.2-1.6 nm, respectively. In all samples, the dominating conformation of the SF chains is the ß-sheet. Cytotoxicity/bioactivity resazurin assays and fluorescence microscopy demonstrate the high viability of MC3T3 pre-osteoblasts to indirect (≥99 ± 9%) and direct (78 ± 2 to 99 ± 13%) contact with the SF/silica materials. Considering their properties and further improvements, these systems are promising candidates to be explored in bone tissue engineering. They also offer excellent prospects as electrolytes for solid-state electrochemical devices, in particular for fuel cells.

19.
Science ; 361(6405): 904-908, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-30166487

RESUMEN

The combination of hybrid perovskite and Cu(In,Ga)Se2 (CIGS) has the potential for realizing high-efficiency thin-film tandem solar cells because of the complementary tunable bandgaps and excellent photovoltaic properties of these materials. In tandem solar device architectures, the interconnecting layer plays a critical role in determining the overall cell performance, requiring both an effective electrical connection and high optical transparency. We used nanoscale interface engineering of the CIGS surface and a heavily doped poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) hole transport layer between the subcells that preserves open-circuit voltage and enhances both the fill factor and short-circuit current. A monolithic perovskite/CIGS tandem solar cell achieved a 22.43% efficiency, and unencapsulated devices under ambient conditions maintained 88% of their initial efficiency after 500 hours of aging under continuous 1-sun illumination.

20.
Molecules ; 23(3)2018 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-29534439

RESUMEN

Hollow multilayered capsules have shown massive potential for being used in the biomedical and biotechnology fields, in applications such as cellular internalization, intracellular trafficking, drug delivery, or tissue engineering. In particular, hollow microcapsules, developed by resorting to porous calcium carbonate sacrificial templates, natural-origin building blocks and the prominent Layer-by-Layer (LbL) technology, have attracted increasing attention owing to their key features. However, these microcapsules revealed a great tendency to aggregate, which represents a major hurdle when aiming for cellular internalization and intracellular therapeutics delivery. Herein, we report the preparation of well-dispersed polysaccharide-based hollow multilayered microcapsules by combining the LbL technique with an optimized purification process. Cationic chitosan (CHT) and anionic alginate (ALG) were chosen as the marine origin polysaccharides due to their biocompatibility and structural similarity to the extracellular matrices of living tissues. Moreover, the inexpensive and highly versatile LbL technology was used to fabricate core-shell microparticles and hollow multilayered microcapsules, with precise control over their composition and physicochemical properties, by repeating the alternate deposition of both materials. The microcapsules' synthesis procedure was optimized to extensively reduce their natural aggregation tendency, as shown by the morphological analysis monitored by advanced microscopy techniques. The well-dispersed microcapsules showed an enhanced uptake by fibroblasts, opening new perspectives for cellular internalization.


Asunto(s)
Alginatos/síntesis química , Materiales Biocompatibles/síntesis química , Quitosano/síntesis química , Alginatos/química , Animales , Materiales Biocompatibles/química , Carbonato de Calcio , Cápsulas , Línea Celular , Quitosano/química , Sistemas de Liberación de Medicamentos , Ácido Glucurónico/síntesis química , Ácido Glucurónico/química , Ácidos Hexurónicos/síntesis química , Ácidos Hexurónicos/química , Ratones , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Estructura Molecular , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA