Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(17)2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39273850

RESUMEN

Abscisic acid (ABA) and gibberellic acid (GA3) are regulators of fruit color and sugar levels, and the application of these hormones is a common practice in commercial vineyards dedicated to the production of table grapes. However, the effects of exogenous ABA and GA3 on wine cultivars remain unclear. We investigated the impact of ABA and GA3 application on Malbec grapevine berries across three developmental stages. We found similar patterns of berry total anthocyanin accumulation induced by both treatments, closely associated with berry H2O2 levels. Quantitative proteomics from berry skins revealed that ABA and GA3 positively modulated antioxidant defense proteins, mitigating H2O2. Consequently, proteins involved in phenylpropanoid biosynthesis were downregulated, leading to decreased anthocyanin content at the almost ripe stage, particularly petunidin-3-G and peonidin-3-G. Additionally, we noted increased levels of the non-anthocyanins E-viniferin and quercetin in the treated berries, which may enhance H2O2 scavenging at the almost ripe stage. Using a linear mixed-effects model, we found statistical significance for fixed effects including the berry H2O2 and sugar contents, demonstrating their roles in anthocyanin accumulation. In conclusion, our findings suggest a common molecular mechanism by which ABA and GA3 influence berry H2O2 content, ultimately impacting anthocyanin dynamics during ripening.

2.
Plants (Basel) ; 13(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38794367

RESUMEN

The impact of global warming on Argentine viticulture may result in a geographical shift, with wine-growing regions potentially moving towards the southwest, known as one of the windiest regions in the world. Deficit irrigation is a widely used strategy to control the shoot growth and improve fruit quality attributes, such as berry skin polyphenols. The present study aimed to assess the effects of different wind intensities and irrigation levels, as well as their interactions, on field-grown Vitis vinifera L. cvs. Malbec and Cabernet Sauvignon. The experiment was conducted during two growing seasons with two wind treatments (sheltered and exposed) and two irrigation treatments (well-watered and moderate deficit irrigation) in a multifactorial design. Vegetative growth, stomatal conductance, shoot biomass partition, fruit yield components and berry skin phenolics were evaluated. Our study found that, generally, wind exposure reduced vegetative growth, and deficit irrigation increased the proportion of smaller berries within the bunches. Meanwhile, deficit irrigation and wind exposure additively increased the concentration of berry skin phenolics. Combined stressful conditions enhance biomass partition across the shoot to fruits in Malbec, increasing the weight of bunches and the number of berries. Our findings offer practical implications for vineyard managers in windy regions, providing actionable insights to optimize grapevine cultivation and enhance wine quality.

3.
Plants (Basel) ; 12(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37176853

RESUMEN

The present study characterized a genetically and phenotypically diverse collection of 27 purple and two non-purple (one orange and one yellow) carrot accessions for concentration of root anthocyanins, phenolics, and carotenoids, and antioxidant capacity estimated by four different methods (ORAC, DPPH, ABTS, FRAP), in a partially replicated experimental design comprising data from two growing seasons (2018 and 2019). Broad and significant (p < 0.0001) variation was found among the accessions for all the traits. Acylated anthocyanins (AA) predominated over non-acylated anthocyanins (NAA) in all the accessions and years analyzed, with AA accounting for 55.5-100% of the total anthocyanin content (TAC). Anthocyanins acylated with ferulic acid and coumaric acid were the most abundant carrot anthocyanins. In general, black or solid purple carrots had the greatest TAC and total phenolic content (TPC), and the strongest antioxidant capacities, measured by all methods. Antioxidant capacity, estimated by all methods, was significantly, positively, and moderately-to-strongly correlated with the content of all individual anthocyanins pigments, TAC, and TPC, in both years (r = 0.59-0.90, p < 0.0001), but not with the carotenoid pigments lutein and ß-carotene; suggesting that anthocyanins and other phenolics, but not carotenoids, are major contributors of the antioxidant capacity in purple carrots. We identified accessions with high concentration of chemically stable AA, with potential value for the production of food dyes, and accessions with relatively high content of bioavailable NAA that can be selected for increased nutraceutical value (e.g., for fresh consumption).

4.
Front Plant Sci ; 13: 835425, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693157

RESUMEN

Grapevine berry quality for winemaking depends on complex and dynamic relationships between the plant and the environment. Winemakers around the world are demanding a better understanding of the factors that influence berry growth and development. In the last decades, an increment in air temperature, CO2 concentration and dryness occurred in wine-producing regions, affecting the physiology and the biochemistry of grapevines, and by consequence the berry quality. The scientific community mostly agrees in a further raise as a result of climate change during the rest of the century. As a consequence, areas most suitable for viticulture are likely to shift into higher altitudes where mean temperatures are suitable for grape cultivation. High altitude can be defined as the minimum altitude at which the grapevine growth and development are differentially affected. At these high altitudes, the environments are characterized by high thermal amplitudes and great solar radiations, especially ultraviolet-B (UV-B). This review summarizes the environmental contribution of global high altitude-related climatic variables to the grapevine physiology and wine composition, for a better evaluation of the possible establishment of vineyards at high altitude in climate change scenarios.

5.
J Sci Food Agric ; 102(7): 2950-2959, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34767265

RESUMEN

BACKGROUND: The gibberellins (GAs) GA5 (inhibitor of GA3 -oxidase), GA4 (biologically active), GA4/7 (commercially available mixture of Ga4 and GA7 ) prohexadione-calcium (ProCa, inhibitor of dioxygenases that render GAs bioactive, negative control), and GA3 (positive control) were applied to bunches of Vitis vinifera cv. Malbec. Different techniques, doses, and timings were used in a 3-year field experiment. In year 1, GA5 , ProCa, and GA3 were applied at 35, 20, and 0 days before veraison (DBV) by dipping bunches three times. In year 2, single applications of GA5 and GA3 , also by immersion, were tested at 60, 45, and 30 DBV. In year 3, applications at 60 and 30 DBV of GA5 , GA4 , and a mixture of GA4/7 were evaluated by dipping or spraying the bunches. RESULTS: Vegetative growth, berry weight, and sugar content were unaffected by treatments. ProCa did not affect the yield with respect to water control, although it reduced the levels of phenolics in berry skins, an undesirable effect for winemaking. GA5 , in the dose range 5-50 mg L-1 , raised berry numbers, thereby augmenting bunch weight and skin phenolics at harvest, so increasing berry quality for winemaking. GA4 and GA4/7 produced similar benefits to GA5 , with similar doses. CONCLUSION: The applications of GA5 , GA4 , and GA4/7 to developing grape berry bunches, in a range of concentrations and by dipping or spraying, increased berry numbers per bunch at harvest. The method can be used as a viticultural practice to improve the production and quality of wine grapes. © 2021 Society of Chemical Industry.


Asunto(s)
Vitis , Carbohidratos/análisis , Frutas/química , Giberelinas/farmacología , Fenoles/análisis , Vitis/química
6.
Plants (Basel) ; 10(5)2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-34066656

RESUMEN

Abscisic acid (ABA) plays a crucial role in the plant responses to environmental signals, in particular by triggering secondary metabolism. High-altitude vineyards in Mendoza, Argentina, are exposed to elevated solar ultraviolet-B (UV-B) levels and moderate water deficits (WD), thus producing grapevine berries with high enological quality for red winemaking. Volatile organic compounds (VOCs) and phenolic compounds (PCs) accumulate in the berry skins, possess antioxidant activity, and are important attributes for red wine. The aim of the present study was to analyze the role of ABA in the modulation of these compounds in Vitis vinifera L. cv. Malbec wines by comparing the independent and interactive effects of UV-B, WD, and ABA. Two UV-B treatments (ambient solar UV-B or reduced UV-B), two watering treatments (well-watered or moderate water deficit) and two ABA treatments (no ABA and sprayed ABA) were given in a factorial design during one growing season. Sprayed ABA, alone and/or in combination with UV-B (specially) and WD (to a lower degree) increased low molecular weight polyphenols (LMWP), anthocyanins, but most noticeably the stilbenes trans-resveratrol and piceid. Under these treatments, VOCs were scarcely affected, and the antioxidant capacity was influenced by the combination of UV-B and WD. From a technological point of view, ABA applications may be an effective vineyard management tool, considering that it elicited a higher content of compounds beneficial for wine aging, as well compounds related to color.

7.
Plant Sci ; 308: 110911, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34034868

RESUMEN

Drought-sensitive crops are threatened as a consequence of limited available water due to climate change. The cultivated potato (Solanum tuberosum) is susceptible to drought and within its wild relative species, Solanum kurtzianum is the Argentinian wild potato species best adapted to arid conditions. However, its physiological responses to water deficit (WD) are still missing. Within the distribution of S. kurtzianum, genotypes could be adapted to differential precipitation regimes. The aim of this work was to evaluate responses of three S. kurtzianum genotypes collected at 1100 (G1), 1900 (G2) and 2100 m a.s.l. (G3) to moderate and severe WD. Treatments were imposed since flowering and lasted 36 days. Yield components, morpho-physiological and biochemical responses; and phenotypic plasticity were evaluated. The three genotypes presented mechanisms to tolerate both WD treatments. G1 presented the lowest yield reduction under moderate WD, mainly through a rapid stomatal closure and a modest vegetative growth. The differences among genotypes suggest that local adaptation is taking place within its natural habitat. Also, G2 presented environmentally induced shifts in plasticity for stomatal length and carotenoids, suggesting that phenotypic plasticity has a role in acclimation of plants to WD until selection works.


Asunto(s)
Altitud , Sequías , Genotipo , Solanum/fisiología , Agua/fisiología , Argentina , Solanum/genética
8.
Plant Cell Rep ; 40(1): 111-125, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33068175

RESUMEN

KEY MESSAGE: By studying three cv. Malbec clones cultivated in two vineyards with contrasting environmental conditions, we demonstrated that DNA methylation has an important role in the phenotypic plasticity and that epigenetic modulation is clone-dependent. Clonal selection and vegetative propagation determine low genetic variability in grapevine cultivars, although it is common to observe diverse phenotypes. Environmental signals may induce epigenetic changes altering gene expression and phenotype. The range of phenotypes that a genotype expresses in different environments is known as phenotypic plasticity. DNA methylation is the most studied epigenetic mechanism, but only few works evaluated this novel source of variability in grapevines. In the present study, we analyzed the effects on phenotypic traits and epigenome of three Vitis vinifera cv. Malbec clones cultivated in two contrasting vineyards of Mendoza, Argentina. Anonymous genome regions were analyzed using methylation-sensitive amplified polymorphism (MSAP) markers. Clone-dependent phenotypic and epigenetic variability between vineyards were found. The clone that presented the clearer MSAP differentiation between vineyards was selected and analyzed through reduced representation bisulfite sequencing. Twenty-nine differentially methylated regions between vineyards were identified and associated to genes and/or promoters. We discuss about a group of genes related to hormones homeostasis and sensing that could provide a hint of the epigenetic role in the determination of the different phenotypes observed between vineyards and conclude that DNA methylation has an important role in the phenotypic plasticity and that epigenetic modulation is clone-dependent.


Asunto(s)
Metilación de ADN , Polimorfismo Genético , Vitis/fisiología , Argentina , Epigénesis Genética , Granjas , Interacción Gen-Ambiente , Fenotipo , Regiones Promotoras Genéticas , Vitis/genética
9.
Plant Physiol Biochem ; 135: 287-294, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30599305

RESUMEN

Environment and crop management shape plant's phenotype. Argentinean high-altitude vineyards are characterized by elevated solar ultraviolet-B radiation (UVB) and water deficit (D) that enhance enological quality for red winemaking. These signals promote phenolics accumulation in leaves and berries, being the responses mediated by abscisic acid (ABA). DNA methylation is an epigenetic mechanism that regulates gene expression and may affect grapevine growth, development and acclimation, since methylation patterns are mitotically heritable. Berry skins low molecular weight polyphenols (LMWP) were characterized in field grown Vitis vinifera L. cv. Malbec plants exposed to contrasting UV-B, D, and ABA treatments during one season. The next season early fruit shoots were epigenetically (methylation-sensitive amplification polymorphism; MSAP) and biochemically (LMWP) characterized. Unstable epigenetic patterns and/or stochastic stress-induced methylation changes were observed. UV-B and D were the treatments that induced greater number of DNA methylation changes respect to Control; and UV-B promoted global hypermethylation of MSAP epiloci. Sequenced MSAP fragments associated with UV-B and ABA showed similarities with transcriptional regulators and ubiquitin ligases proteins activated by light. UV-B was associated with flavonols accumulation in berries and with hydroxycinnamic acids in the next season fruit shoots, suggesting that DNA methylation could regulate the LMWP accumulation and participate in acclimation mechanisms.


Asunto(s)
Ácido Abscísico/farmacología , Metilación de ADN , Polifenoles/metabolismo , Vitis/metabolismo , Ácidos Cumáricos/metabolismo , Metilación de ADN/efectos de los fármacos , Metilación de ADN/efectos de la radiación , Deshidratación , Flavonoles/metabolismo , Frutas/metabolismo , Brotes de la Planta/metabolismo , Rayos Ultravioleta , Vitis/efectos de los fármacos , Vitis/fisiología , Vitis/efectos de la radiación
10.
Food Technol Biotechnol ; 55(2): 266-275, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28867958

RESUMEN

Allium sp. vegetables are widely consumed for their characteristic flavour. Additionally, their consumption may provide protection against cardiovascular disease due to their antiplatelet and antioxidant activities. Although antiplatelet and antioxidant activities in Allium sp. are generally recognised, comparative studies of antiplatelet and antioxidant potency among the main Allium vegetable species are lacking. Also, the relationship between organosulfur and phenolic compounds and these biological activities has not been well established. In this study, the in vitro antiplatelet and antioxidant activities of the most widely consumed Allium species are characterised and compared. The species total organosulfur and phenolic content, and the HPLC profiles of 11 phenolic compounds were characterised and used to investigate the relationship between these compounds and antiplatelet and antioxidant activities. Furthermore, antiplatelet activities in chives and shallot have been characterised for the first time. Our results revealed that the strongest antiplatelet agents were garlic and shallot, whereas chives had the highest antioxidant activity. Leek and bunching onion had the weakest both biological activities. Significantly positive correlations were found between the in vitro antiplatelet activity and total organosulfur (R=0.74) and phenolic (TP) content (R=0.73), as well as between the antioxidant activity and TP (R=0.91) and total organosulfur content (R=0.67). Six individual phenolic compounds were associated with the antioxidant activity, with catechin, epigallocatechin and epicatechin gallate having the strongest correlation values (R>0.80). Overall, our results suggest that both organosulfur and phenolic compounds contribute similarly to Allium antiplatelet activity, whereas phenolics, as a whole, are largely responsible for antioxidant activity, with broad variation observed among the contributions of individual phenolic compounds.

11.
Physiol Plant ; 153(1): 79-90, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24796562

RESUMEN

Production of phytohormones is one of the main mechanisms to explain the beneficial effects of plant growth-promoting rhizobacteria (PGPR) such as Azospirillum sp. The PGPRs induce plant growth and development, and reduce stress susceptibility. However, little is known regarding the stress-related phytohormone abscisic acid (ABA) produced by bacteria. We investigated the effects of Azospirillum brasilense Sp 245 strain on Arabidopsis thaliana Col-0 and aba2-1 mutant plants, evaluating the morphophysiological and biochemical responses when watered and in drought. We used an in vitro-grown system to study changes in the root volume and architecture after inoculation with Azospirillum in Arabidopsis wild-type Col-0 and on the mutant aba2-1, during early growth. To examine Arabidopsis development and reproductive success as affected by the bacteria, ABA and drought, a pot experiment using Arabidopsis Col-0 plants was also carried out. Azospirillum brasilense augmented plant biomass, altered root architecture by increasing lateral roots number, stimulated photosynthetic and photoprotective pigments and retarded water loss in correlation with incremented ABA levels. As well, inoculation improved plants seed yield, plants survival, proline levels and relative leaf water content; it also decreased stomatal conductance, malondialdehyde and relative soil water content in plants submitted to drought. Arabidopsis inoculation with A. brasilense improved plants performance, especially in drought.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/microbiología , Azospirillum brasilense/fisiología , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/análisis , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biomasa , Clorofila/metabolismo , Sequías , Flores/genética , Flores/microbiología , Flores/fisiología , Peroxidación de Lípido , Fotosíntesis/fisiología , Reguladores del Crecimiento de las Plantas/análisis , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Hojas de la Planta/fisiología , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Transpiración de Plantas/fisiología , Prolina/metabolismo , Plantones/genética , Plantones/microbiología , Plantones/fisiología , Semillas/genética , Semillas/microbiología , Semillas/fisiología , Agua/fisiología
12.
Phytochemistry ; 96: 148-57, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24075072

RESUMEN

Ultraviolet-B solar radiation (UV-B) is an environmental signal with biological effects in plant tissues. Recent investigations have assigned a protective role of volatile organic compounds (VOCs) in plant tissues submitted to biotic and abiotic stresses. This study investigated VOCs in berries at three developmental stages (veraison, pre-harvest and harvest) of Vitis vinifera L. cv. Malbec exposed (or not) to UV-B both, in in vitro and field experiments. By Head Space-Solid Phase Micro Extraction-Gas Chromatography-Electron Impact Mass Spectrometry (HS-SPME-GC-EIMS) analysis, 10 VOCs were identified at all developmental stages: four monoterpenes, three aldehydes, two alcohols and one ketone. Monoterpenes increased at pre-harvest and in response to UV-B in both, in vitro and field conditions. UV-B also augmented levels of some aldehydes, alcohols and ketones. These results along with others from the literature suggest that UV-B induce grape berries to produce VOCs (mainly monoterpenes) that protect the tissues from UV-B itself and other abiotic and biotic stresses, and could affect the wine flavor. Higher emission of monoterpenes was observed in the field experiments as compared in vitro, suggesting the UV-B/PAR ratio is not a signal in itself.


Asunto(s)
Monoterpenos/análisis , Rayos Ultravioleta , Vitis/química , Vitis/efectos de la radiación , Compuestos Orgánicos Volátiles/análisis , Alcoholes/análisis , Alcoholes/efectos de la radiación , Aldehídos/análisis , Aldehídos/efectos de la radiación , Frutas/química , Cromatografía de Gases y Espectrometría de Masas , Cetonas/análisis , Cetonas/efectos de la radiación , Estructura Molecular , Monoterpenos/efectos de la radiación , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/aislamiento & purificación
13.
Physiol Plant ; 149(1): 127-40, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23167433

RESUMEN

We previously demonstrated that solar ultraviolet-B (UV-B) radiation levels in high altitude vineyards improve berry quality in Vitis vinifera cv. Malbec, but also reduce berry size and yield, possibly as a consequence of increased oxidative damage and growth reductions (lower photosynthesis). The defense mechanisms toward UV-B signal and/or evoked damage promote production of antioxidant secondary metabolites instead of primary metabolites. Purportedly, the UV-B effects will depend on tissues developmental stage and interplay with other environmental conditions, especially stressful situations. In this work, grapevines were exposed to high solar UV-B (+UV-B) and reduced (by filtering) UV-B (-UV-B) treatments during three consecutive seasons, and the effects of UV-B, developmental stages and seasons on the physiology were studied, i.e. growth, tissues morphology, photosynthesis, photoprotective pigments, proline content and antioxidant capacity of leaves. The +UV-B reduced photosynthesis and stomatal conductance, mainly through limitation in gas exchange, reducing plant's leaf area, net carbon fixation and growth. The +UV-B augmented leaf thickness, and also the amounts of photoprotective pigments and proline, thereby increasing the antioxidant capacity of leaves. The defense mechanisms triggered by + UV-B reduced lipid peroxidation, but they were insufficient to protect the photosynthetic pigments per leaf dry weight basis. The +UV-B effects depend on tissues developmental stage and interplay with other environmental conditions such as total radiation and air temperatures.


Asunto(s)
Vitis/crecimiento & desarrollo , Vitis/metabolismo , Altitud , Antioxidantes/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Peroxidación de Lípido , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Estomas de Plantas , Prolina/metabolismo , Luz Solar , Rayos Ultravioleta , Vitis/efectos de la radiación
14.
Phytochemistry ; 77: 89-98, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22277733

RESUMEN

This study investigated the terpene profiles as determined by GC-EIMS analysis of in vitro cultured plants of Vitis vinifera exposed to a "field-like" dose of UV-B (4.75 kJ m(-2)d(-1)) administered at two different fluence rates (low, 16 h at 8.25 µW cm(-2), and high 4 h at 33 µW cm(-2)). Low UV-B treatment increased levels of the membrane-related triterpenes sitosterol, stigmasterol and lupeol, more notable in young leaves, suggesting elicitation of a mechanism for grapevine acclimation. By contrast, accumulation of compounds with antioxidant properties, diterpenes α and γ tocopherol and phytol, the sesquiterpene E-nerolidol and the monoterpenes carene, α-pinene and terpinolene had maximum accumulation under high UV-B, which was accentuated in mature leaves. Also the levels of the sesquiterpenic stress-related hormone abscisic acid (ABA) increased under high UV-B, although 24 h post irradiation ABA concentrations decreased. Such increments of antioxidant terpenes along with ABA suggest elicitation of mechanism of defense. The adaptative responses induced by relatively low UV-B irradiations as suggested by synthesis of terpenes related with membrane stability correlated with augments in terpene synthase activity.


Asunto(s)
Terpenos/metabolismo , Rayos Ultravioleta , Vitis/efectos de la radiación , Ácido Abscísico/metabolismo , Adaptación Fisiológica , Cromatografía de Gases y Espectrometría de Masas , Fitosteroles/biosíntesis , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Análisis de Componente Principal , Estrés Fisiológico , Terpenos/química , Vitis/metabolismo
15.
J Agric Food Chem ; 59(9): 4874-84, 2011 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-21469737

RESUMEN

It has been previously found that abscisic acid (ABA) participates in the activation of grapevine leaf tissue defense against potentially damaging effects of solar ultraviolet-B radiation (UV-B), apparently by triggering biosynthesis of phenols that filter the harmful radiation and act as antioxidants. The present work studies the effect of solar UV-B and exogenously applied ABA on berry growth, sugar accumulation, and phenol (anthocyanin and nonanthocyanin) profiles across berry development and ripening of Vitis vinifera L. cv. Malbec in a vineyard at 1450 m of altitude. The grapevines were exposed to relatively high UV-B irradiation (normal sunlight; +UV-B) and also to a reduced UV-B treatment (filter exclusion; -UV-B). These two UV-B treatments were combined with weekly spray applications to the leaves and berries of 1 mM ABA (+ABA) or H(2)O (-ABA). Reduction of UV-B delayed berry development and maturation, whereas the +UV-B and +ABA combined treatment hastened berry sugar and phenol accumulation. +UV-B/+ABA treatments also reduced berry growth and decreased sugar per berry without affecting sugar concentration (°Brix) at harvest. Berry skin ABA levels were higher in the +UV-B and +ABA combined treatment, which also hastened the onset of ripening up to 20 days. Berry skin ABA levels then decreased toward harvest, implying a possible role for ABA in the control of ripening in this nonclimacteric fruit. Under both +UV-B and +ABA treatments berry skin phenols were additively increased with a change in anthocyanin and nonanthocyanin profiles and increases in the proportion of phenols with high antioxidant capacity.


Asunto(s)
Ácido Abscísico/metabolismo , Flavonoides/biosíntesis , Vitis/metabolismo , Vitis/efectos de la radiación , Frutas/metabolismo , Frutas/efectos de la radiación , Fenoles , Polifenoles , Rayos Ultravioleta , Vitis/crecimiento & desarrollo
16.
Plant Cell Environ ; 33(1): 1-10, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19781012

RESUMEN

We investigated the interactions of abscisic acid (ABA) in the responses of grape leaf tissues to contrasting ultraviolet (UV)-B treatments. One-year-old field-grown plants of Vitis vinifera L. were exposed to photosynthetically active radiation (PAR) where solar UV-B was eliminated by using polyester filters, or where PAR was supplemented with UV-B irradiation. Treatments combinations included weekly foliar sprays of ABA or a water control. The levels of UV-B absorbing flavonols, quercetin and kaempferol were significantly decreased by filtering out UV-B, while applied ABA increased their content. Concentration of two hydroxycinnamic acids, caffeic and ferulic acids, were also increased by ABA, but not affected by plus UV-B (+UV-B) treatments. Levels of carotenoids and activities of the antioxidant enzymes, catalase, ascorbate peroxidase and peroxidase were elevated by +ABA treatments, but only if +UV-B was given. Cell membrane beta-sitosterol was enhanced by ABA independently of +UV-B. Changes in photoprotective compounds, antioxidant enzymatic activities and sterols were correlated with lessened membrane harm by UV-B, as assessed by ion leakage. Oxidative damage expressed as malondialdehyde content was increased under +UV-B treatments. Our results suggest that the defence system of grape leaf tissues against UV-B is activated by UV-B irradiation with ABA acting downstream in the signalling pathway.


Asunto(s)
Ácido Abscísico/metabolismo , Hojas de la Planta/metabolismo , Rayos Ultravioleta , Vitis/efectos de la radiación , Ácido Abscísico/farmacología , Antocianinas/metabolismo , Antioxidantes/metabolismo , Carotenoides/metabolismo , Catalasa/metabolismo , Clorofila/metabolismo , Quempferoles/metabolismo , Peroxidación de Lípido , Estrés Oxidativo , Peroxidasas/metabolismo , Hojas de la Planta/efectos de la radiación , Quercetina/metabolismo , Sitoesteroles/metabolismo , Vitis/metabolismo
17.
J Agric Food Chem ; 56(9): 2892-8, 2008 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-18412357

RESUMEN

The responses of Vitis vinifera L. cv. Malbec to different solar ultraviolet-B radiation (UV-B) levels were assessed in two contrasting situations, under sunlight with full UV-B (+UV-B) and filtered UV-B (-UV-B), in three different locations at 500, 1000, and 1500 m above sea level (asl). To evaluate the effects of radiation, a simple, accurate, and rapid method for the separation and simultaneous determination of representative phenolic compounds in grape berry skins by capillary zone electrophoresis was developed. Separation was carried out in less than 20 min with 20 mM sodium tetraborate buffer containing 30% methanol, pH 9.00. The procedure is fast and reliable, and extracted grape berry skins can be directly analyzed without prior sample cleanup procedure. Berry skins from the +UV-B treatment at 1500 m asl showed the highest levels of total polyphenols anthocyanins, and resveratrol, compared with the -UV-B treatment at this altitude.


Asunto(s)
Electroforesis Capilar , Frutas/química , Frutas/crecimiento & desarrollo , Fenoles/análisis , Rayos Ultravioleta , Vitis/crecimiento & desarrollo , Antocianinas/análisis , Flavonoides/análisis , Polifenoles , Resveratrol , Estilbenos/análisis , Luz Solar , Vitis/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA