RESUMEN
AIMS: This study compared the capacity of strains of Salmonella enterica serovars Enteritidis and Dublin isolated in Brazil to invade epithelial cells, to be internalized by and survive within macrophages, and to stimulate cytokine release in vitro. METHODS AND RESULTS: Both serovars infected 75 and 73% Caco-2 (human) and MDBK (bovine) epithelial cells respectively. Salmonella Dublin and S. Enteritidis (i) were internalized at the respective rates of 79·6 and 65·0% (P ≤ 0·05) by U937 (human) macrophages, and 70·4 and 66·9% by HD11 (chicken) macrophages; and (ii) multiplied at the respective rates of 3·2- and 2·7-fold within U937 cells, and 1·9- and 1·1-fold (P ≤ 0·05) within HD11 cells respectively. Seventy per cent of 10 S. Dublin strains stimulated IL-8 production, while 70% of S. Enteritidis strains enhanced production of IL-1ß, IL-6, IL-8, IL-10, IL-12p70 and TNF in Caco-2 cells. CONCLUSIONS: Compared with S. Enteritidis, S. Dublin had stronger ability to survive within macrophages and induced weak cytokine production, which may explain the higher incidence of invasive diseases caused by S. Dublin in humans. SIGNIFICANCE AND IMPACT OF THE STUDY: This study compared S. enterica serovars Enteritidis and Dublin to provide comparative data about the profile of the two serovars in cells from humans, the common host and their respective natural animal hosts and vice versa in order to check the differences between these two phylogenetically closely related serovars that share antigenic properties but present different phenotypic behaviours.