Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Nanosci Nanotechnol ; 8(7): 3399-405, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19051886

RESUMEN

Sum-Frequency Vibrational Spectroscopy (SFVS) has been used to investigate the effect of nitrogen-flow drying on the molecular ordering of Layer-by-Layer (LbL) films of poly(allylamine hydrochloride) (PAH) alternated with poly(styrene sulfonate) (PSS). We find that films dried by spontaneous water evaporation are more ordered and homogeneous than films dried by nitrogen flow. The latter are quite inhomogeneous and may have regions with highly disordered polymer conformation. We propose that drying by spontaneous water evaporation reduces the effect of drag by the drying front, while during nitrogen-flow drying the fast evaporation of water "freezes" the disordered conformation of adsorbed polyelectrolyte molecules. These findings are important for many applications of LbL films, since device performance usually depends on film morphology and its molecular structure.


Asunto(s)
Nanotecnología/métodos , Poliaminas/química , Poliestirenos/química , Adsorción , Electrólitos , Conformación Molecular , Estructura Molecular , Nanotecnología/instrumentación , Nitrógeno/química , Polímeros/química , Espectrofotometría/métodos , Propiedades de Superficie , Factores de Tiempo , Agua/química
2.
J Phys Chem B ; 110(39): 19271-9, 2006 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-17004779

RESUMEN

The particle size effect observed on the performance of Pt/C electrocatalysts toward the methanol oxidation reaction (MOR) has been investigated with differential electrochemical mass spectrometry (DEMS). The investigation has been conducted under both potentiodynamic and potentiostatic conditions as research on methanol electrochemical oxidation is closely related to interest in direct methanol fuel cells. The particle size effect observed on the MOR is commonly regarded as a reflection of different Pt-CO and Pt-OH bond strengths for different particle sizes. This work focuses mainly on the mechanism of methanol dehydrogenation on platinum which is central to the problem of the optimization of the efficiency of methanol electro-oxidation by favoring the CO(2) formation pathway. It was found that the partitioning of the methanol precursor among the end products on supported platinum nanoparticles is strongly dependent on particle size distribution. Also, it is postulated that the coupling among particles of different sizes via soluble products must be considered in order to understand the particle size effects on the observed trends of product formation. An optimum particle size range for efficiently electro-oxidizing methanol to CO(2) was found between 3 and 10 nm, and loss in efficiency is mostly related to the partial oxidation of methanol to formaldehyde on either too small or too large particles. The possible reasons for these observations are also discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA