Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Fungi (Basel) ; 9(7)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37504716

RESUMEN

Oidiodendron maius G.L. Barron is a recognized fungal species capable of forming ericoid mycorrhiza with various positive effects on host plants; therefore, newly found and previously uncharacterized O. maius strains may be valuable for heather plants' controlled mycorrhization. Characteristics of the O. maius F3860 strain were studied, i.e., mycelium growth on various nutrient media and the ability to secrete auxins and enzymes. O. maius F3860 grew rapidly on malt extract agar and potato dextrose agar. It was also able to grow on nutrient media suitable for heather plant cultivation. The presence of the flavonoids rutin and quercetin increased the mycelium growth rate compared to the control, starting from the 8th to the 13th days of cultivation. The ability to secrete auxins was confirmed with bioassay and thin-layer chromatography, and their content, as well as phytase activity, was estimated spectrophotometrically. Both in nutrient media with tryptophan and without it, O. maius F3860 secreted about 6 µg IAA/mL growth medium. O. maius F3860 possessed extracellular phytase, protease, and phenol oxidase activities. The investigation indicates O. maius F3860's promise for heather seedling inoculation as an approach to increase their fitness.

2.
J Fungi (Basel) ; 8(11)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36422046

RESUMEN

Plants' mineral nutrition in acidic soils can be facilitated by phosphate solubilizing fungi inhabiting the root systems of these plants. We attempt to find dark septate endophyte (DSE) isolates in the roots of wild-heather plants, which are capable of improving plants' phosphorus nutrition levels. Bright-field and confocal laser scanning microscopy were used for the visualization of endophytes. A model system of co-cultivation with Vaccinium macrocarpon Ait. was used to study a fungal isolate's ability to supply plants with phosphorus. Fungal phytase activity and phosphorus content in plants were estimated spectrophotometrically. In V. vitis-idaea L. roots, we obtained a Phialocephala fortinii Wang, Wilcox DSE2 isolate with acid phytase activity (maximum 6.91 ± 0.17 U on 21st day of cultivation on potato-dextrose broth medium) and the ability to accumulate polyphosphates in hyphae cells. The ability of the isolate to increase both phosphorus accumulation and biomass in V. macrocarpon is also shown. The data obtained for the same isolate, as puzzle pieces put together, indicate the possible mediation of P. fortinii DSE2 isolate in the process of phosphorus intake from inorganic soil reserves to plants.

3.
Plants (Basel) ; 11(2)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35050117

RESUMEN

The use of photoconversion coatings is a promising approach to improving the quality of light when growing plants in greenhouses in low light conditions. In this work, we studied the effect of fluoropolymer coatings, which produce photoconversion of UV-A radiation and violet light into blue and red light, on the growth and resistance to heat stress of tomato plants (Solanum lycopersicum L.). The stimulating effect of the spectrum obtained as a result of photoconversion on plant growth and the activity of the photosynthesis process are shown. At the same time, the ability to withstand heat stress is reduced in plants grown under a photoconversion coating. Stress electrical signals, which normally increase resistance, in such plants have a much weaker protective effect on the photosynthetic apparatus. The observed effects are apparently explained by a decrease in the concentration of H2O2 in plants grown using photoconversion technologies, which leads to a shift in the development program towards increased productivity to the detriment of the protective function. Thus, when using photoconversion technologies in agricultural practice, it is necessary to pay increased attention to maintaining stable conditions during plant cultivation.

4.
Laterality ; 26(1-2): 106-129, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33593226

RESUMEN

The visual system and lifestyle characteristics make the even-toed ungulates an excellent model for the studies of behavioural lateralization. Recent research has focused on these mammals providing evidence of lateralization in a wide range of behaviours. This provides an opportunity for the collation of the current theoretical assumptions and the existing empirical evidence for visual lateralization in artiodactyls. In the present study, we aim first to gain a fuller picture of hemispheric specializations in saiga antelopes by investigating the lateralization of vigilance and novel object inspection in the wild. Second, we summarized the results of the research into visual lateralization in even-toed ungulates and attempted to assess the applicability of two popular hypotheses about the division of hemispheric roles. The results on saigas show a significant preference for head turns to the right visual field during vigilance which was more robust in individuals in larger groups. When an unfamiliar artificial object was placed in their natural setting, saigas preferentially viewed it predominantly with the right eye. These results, together with the cumulative evidence in artiodactyls, do not follow either the approach-withdrawal or positivity-negativity dichotomous patterns widely used to explain the division of functions between the hemispheres.


Asunto(s)
Antílopes , Animales , Lateralidad Funcional , Humanos , Campos Visuales
5.
J Plant Physiol ; 258-259: 153377, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33621780

RESUMEN

Mechanisms of the specific systemic response of plant to different adverse factors are poorly understood. We studied the mechanisms acting in wheat (Triticum aestivum L.) under the action of local burn and gradual heating. Both stimuli induce a variation potential (VP) propagation and a biphasic (fast and long-term phases) photosynthetic response in non-stimulated zones of plant with stimulus-specific parameters of the latter: the fast phase or long-term phase predominance in responses induced by burn or heating, respectively. The burn-induced VP and photosynthetic response attenuate with distance, while the heating-induced VP and photosynthetic response were of more stable amplitude in distant part of the stimulated plant. VP propagation in both cases induced apoplast alkalization with dynamics well corresponding to such of VP and of the fast phase of photosynthetic response. Gradual heating induced a significant rise in jasmonate production along with a decrease in stomatal conductance with characteristic times well corresponding to the long-term phase of the photosynthetic response. We suppose that the VP-induced pH shift is responsible for in the induction of the fast phase, while jasmonate production for the long-term phase of the photosynthetic response. The revealed differences in the systemic response to stressors studied, apparently, reflect two distinct plant adaptation strategies to fast and slow-growing stimuli. The immediate response in the tissue nearest to the damage zone is the most important under a fast-growing stimulus. The fundamentally different situation is under a slowly-growing stimulus which provokes long-term changes in the plant that ensure the preparation of the whole organism for impending environmental changes.


Asunto(s)
Incendios , Calefacción/efectos adversos , Hojas de la Planta/fisiología , Estrés Fisiológico/fisiología , Triticum/fisiología , Concentración de Iones de Hidrógeno , Reguladores del Crecimiento de las Plantas/metabolismo
6.
Plants (Basel) ; 9(10)2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33076246

RESUMEN

A local leaf burning causes variation potential (VP) propagation, a decrease in photosynthesis activity, and changes in the content of phytohormones in unstimulated leaves in pea plants. The VP-induced photosynthesis response develops in two phases: fast inactivation and long-term inactivation. Along with a decrease in photosynthetic activity, there is a transpiration suppression in unstimulated pea leaves, which corresponds to the long-term phase of photosynthesis response. Phytohormone level analysis showed an increase in the concentration of jasmonic acid (JA) preceding a transpiration suppression and a long-term phase of the photosynthesis response. Analysis of the spatial and temporal dynamics of electrical signals, phytohormone levels, photosynthesis, and transpiration activity showed the most pronounced changes in the more distant leaf from the area of local stimulation. The established features are related to the architecture of the vascular bundles in the pea stem.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA