Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 202: 116416, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38669853

RESUMEN

The Soummam River, a vital watercourse in Algeria is threatened by anthropogenic activities despite its protected wetland status. This study is the first to assess sediment pollution in the Soummam River, examining levels, compositions, sources of 16 PAHs and their effects on the environment and human health. Analysis employing Principal Component Analysis (PCA) and molecular diagnostic ratios pointed to petrogenic sources, likely stemming from petroleum leaks originating from aging pipeline and vehicles, as well as pyrogenic sources arising from vehicle exhaust and biomass combustion. Environmental and health risks were assessed through risk quotients (RQ), Sediments Quality Guidelines (SQG) and Total Lifetime Cancer Risk (TLCR). Ecological risk was found to range from moderate to high, with anticipated biological impacts, while cancer risk was deemed low. Toxicity assessment, measured by TEQ, revealed that the majority of monitoring stations exceeded safe levels. Consequently, urgent action by local authorities is warranted to implement ecosystem rehabilitation measures.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Hidrocarburos Policíclicos Aromáticos , Ríos , Contaminantes Químicos del Agua , Argelia , Hidrocarburos Policíclicos Aromáticos/análisis , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química , Ríos/química , Humanos , Análisis de Componente Principal
2.
Artículo en Inglés | MEDLINE | ID: mdl-38297822

RESUMEN

In this study, researchers aim to enhance the realism of circulatory system simulations, focusing on factors affecting flow variations, particularly in stenotic arteries of individuals with altered hematocrit levels. Through extensive data collection and varied conditions, the goal is to attain more precise and valid results. The study conducts approximate simulations to comprehensively describe the dynamic motion of pulsatile flow. Different values of inlet velocity (UDF) are introduced, considering potential arterial distortion or occlusion due to plaque deposition, along with variations in hematocrit (Hct) levels commonly observed in patients. Three distinct types of pulsatile blood flow, corresponding to diabetes (Hct 65%), healthy (Hct 45%), and anemia (Hct 25%), are studied and compared. The research illuminates that stenosis in arteries with varying hematocrit levels significantly impacts hydrodynamic features, potentially predisposing individuals to cardiovascular diseases. Through meticulous analysis, several conclusions about hemodynamic characteristics are drawn. It is observed that both velocity and wall shear stress exhibit variation along the affected artery, influenced by stenosis and changes in hematocrit levels. Notably, the highest influence on velocity and wall shear stress is observed with Hct 65%, compared to Hct 45% and Hct 25% at the moment of stenosis. These findings hold substantial practical implications for the field of cardiovascular health, providing valuable insights into blood flow behavior in stenotic arteries with diverse hematocrit levels. Ultimately, this research contributes to more effective clinical interventions.

3.
Comput Methods Biomech Biomed Engin ; 26(8): 927-940, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35852069

RESUMEN

This work presents a numerical technique for simulating non-Newtonian blood flow in human's arteries driven by an oscillating pressure gradient. The blood is considered as a thixotropic fluid and its structural properties are considered to obey Moore's thixotropic model as a constitutive equation. The equations of motion are simplified considering the flow laminar, axisymmetric and the fluid incompressible. A numerical solution is presented using finite difference method in order to compute the velocity field and wall shear stress distribution. The numerical results obtained have been validated with the analytical solution available in the literature. Furthermore, the effect of the structural properties, the average of the pressure gradient and the external acceleration on the velocity and wall shear stress distribution is investigated. These results reveal the influence of the different parameters studied on the pipe flow response of the thixotropic fluid.


Asunto(s)
Arterias , Modelos Cardiovasculares , Humanos , Flujo Pulsátil/fisiología , Velocidad del Flujo Sanguíneo/fisiología , Aceleración , Estrés Mecánico , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA