Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 126(48): 10185-10193, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36418225

RESUMEN

The amino group of proline is part of a pyrrolidine ring, which makes it unique among the proteinogenic amino acids. To unravel its full electronic structure, proline in solid state and aqueous solution is investigated using X-ray emission spectroscopy and resonant inelastic soft X-ray scattering. By controlling the pH value of the solution, proline is studied in its cationic, zwitterionic, and anionic configurations. The spectra are analyzed within a "building-block principle" by comparing with suitable reference molecules, i.e., acetic acid, cysteine, and pyrrolidine, as well as with spectral calculations based on density functional theory. We find that the electronic structure of the carboxyl group of proline is very similar to that of other amino acids as well as acetic acid. In contrast, the electronic structure of the amino group is significantly different and strongly influenced by the ring structure of proline.


Asunto(s)
Acetatos , Prolina , Rayos X , Espectrometría por Rayos X
2.
Artículo en Inglés | MEDLINE | ID: mdl-36054393

RESUMEN

Transit-time flow meters need to compensate for cross-sensitivity to temperature. We show that Lamb wave-based setups are less affected by temperature. An optimality criterion is derived that allows to tune the meter into a zero local sensitivity to temperature. For this end, the flow-induced change in ultrasonic transit time is revisited first. While wetted piston transducer meters are directly sensitive to the change in propagation speed, the change in time of flight of Lamb wave-based systems is due to the beam displacement. Second, the effect of temperature is incorporated analytically. It is found that the temperature-dependent radiation angle of Lamb waves is able to compensate for changes in the speed of sound, leading to an (almost) unaffected overall time of flight. This effect is achievable with any fluid and in a wide temperature range. As an example, we discuss a water meter in the range from 0°C to 100°C. The model is validated against temperature and flow rate-dependent measurements obtained on a prototype. The measured data fits well to the developed model and confirms the reduced cross-sensitivity to temperature. Although an in-line meter is considered here, the results extend to clamp-on devices.


Asunto(s)
Sonido , Ultrasonido , Temperatura , Transductores , Agua
3.
Sensors (Basel) ; 22(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36081105

RESUMEN

Guided acoustic waves are commonly used in domestic water meters to measure the flow rate. The accuracy of this measurement method is affected by factors such as variations in temperature and limescale deposition inside of the pipe. In this work, a new approach using signals from different sound propagation paths is used to determine these quantities and allow for subsequent compensation. This method evaluates the different propagation times of guided Lamb waves in flow measurement applications. A finite element method-based model is used to identify the calibration curves for the device under test. The simulated dependencies on temperature and layer thickness are validated by experimental data. Finally, a test on simulated data with varying temperatures and limescale depositions proves that this method can be used to separate both effects. Based on these values, a flow measurement correction scheme can be derived that provides an improved resolution of guided acoustic wave-based flow meters.


Asunto(s)
Acústica , Ultrasonido , Temperatura Corporal , Sonido , Temperatura
4.
J Phys Chem Lett ; 12(16): 3885-3890, 2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33856793

RESUMEN

The organic component (methylammonium) of CH3NH3PbI3-xClx-based perovskites shows electronic hybridization with the inorganic framework via H-bonding between N and I sites. Femtosecond dynamics induced by core excitation are shown to strongly influence the measured X-ray emission spectra and the resonant inelastic soft X-ray scattering of the organic components. The N K core excitation leads to a greatly increased N-H bond length that modifies and strengthens the interaction with the inorganic framework compared to that in the ground state. The study indicates that excited-state dynamics must be accounted for in spectroscopic studies of this perovskite solar cell material, and the organic-inorganic hybridization interaction suggests new avenues for probing the electronic structure of this class of materials. It is incidentally shown that beam damage to the methylamine component can be avoided by moving the sample under the soft X-ray beam to minimize exposure and that this procedure is necessary to prevent the creation of experimental artifacts.

5.
ACS Appl Mater Interfaces ; 8(32): 21101-5, 2016 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-27463021

RESUMEN

Using reflection electron energy loss spectroscopy (REELS), we have investigated the optical properties at the surface of a chalcopyrite-based Cu(In,Ga)(S,Se)2 (CIGSSe) thin-film solar cell absorber, as well as an indium sulfide (InxSy) buffer layer before and after annealing. By fitting the characteristic inelastic scattering cross-section λK(E) to cross sections evaluated by the QUEELS-ε(k,ω)-REELS software package, we determine the surface dielectric function and optical properties of these samples. A comparison of the optical values at the surface of the InxSy film with bulk ellipsometry measurements indicates a good agreement between bulk- and surface-related optical properties. In contrast, the properties of the CIGSSe surface differ significantly from the bulk. In particular, a larger (surface) band gap than for bulk-sensitive measurements is observed, providing a complementary and independent confirmation of earlier photoelectron spectroscopy results. Finally, we derive the inelastic mean free path λ for electrons in InxSy, annealed InxSy, and CIGSSe at a kinetic energy of 1000 eV.

6.
J Phys Chem Lett ; 5(23): 4143-8, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26278946

RESUMEN

The molecular structure of liquid water is susceptible to changes upon admixture of salts due to ionic solvation, which provides the basis of many chemical and biochemical processes. Here we demonstrate how the local electronic structure of aqueous potassium chloride (KCl) solutions can be studied by resonant inelastic soft X-ray scattering (RIXS) to monitor the effects of the ion solvation on the hydrogen-bond (HB) network of liquid water. Significant changes in the oxygen K-edge emission spectra are observed with increasing KCl concentration. These changes can be attributed to modifications in the proton dynamics, caused by a specific coordination structure around the salt ions. Analysis of the spectator decay spectra reveals a spectral signature that could be characteristic of this structure.

7.
J Chem Phys ; 136(14): 144311, 2012 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-22502522

RESUMEN

The electronic structure of gas-phase H(2)O and D(2)O molecules has been investigated using resonant inelastic soft x-ray scattering (RIXS). We observe spectator shifts for all valence orbitals when exciting into the lowest three absorption resonances. Strong changes of the relative valence orbital emission intensities are found when exciting into the different absorption resonances, which can be related to the angular anisotropy of the RIXS process. Furthermore, excitation into the 4a(1) resonance leads to nuclear dynamics on the time scale of the RIXS process; we find evidence for vibrational coupling and molecular dissociation in both, the spectator and the participant emission.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA