Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39001020

RESUMEN

The digitization of production systems has revolutionized industrial monitoring. Analyzing real-time bottom-up data enables the dynamic monitoring of industrial processes. Data are collected in various types, like video frames and time signals. This article focuses on leveraging images from a vision system to monitor the manufacturing process on a computer numerical control (CNC) lathe machine. We propose a method for designing and integrating these video modules on the edge of a production line. This approach detects the presence of raw parts, measures process parameters, assesses tool status, and checks roughness in real time using image processing techniques. The efficiency is evaluated by checking the deployment, the accuracy, the responsiveness, and the limitations. Finally, a perspective is offered to use the metadata off the edge in a more complex artificial-intelligence (AI) method for predictive maintenance.

2.
Sensors (Basel) ; 23(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38005633

RESUMEN

Digital Twin (DT) aims to provide industrial companies with an interface to visualize, analyze, and simulate the production process, improving overall performance. This paper proposes to extend existing DT by adding a complementary methodology to make it suitable for process supervision. To implement our methodology, we introduce a novel framework that identifies, collects, and analyses data from the production system, enhancing DT functionalities. In our case study, we implemented Key Performance Indicators (KPIs) in the immersive environment to monitor physical processes through cyber representation. First, a review of the Digital Twin (DT) allows us to understand the status of the existing methodologies as well as the problem of data contextualization in recent years. Based on this review, performance data in Cyber-Physical Systems (CPS) are identified, localized, and processed to generate indicators for monitoring machine and production line performance through DT. Finally, a discussion reveals the difficulties of integration and the possibilities to respond to other major industrial challenges, like predictive maintenance.

3.
Sensors (Basel) ; 23(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37836855

RESUMEN

In the realm of Industry 4.0, diverse technologies such as AI, Cyber-Physical Systems, IoT, and advanced sensors converge to shape smarter future factories. Mobile manipulators (MMs) are pivotal, fostering flexibility, adaptability, and collaboration in industrial processes. On one hand, MMs offer a remarkable level of flexibility, adaptability, and collaboration in industrial processes, facilitating swift production line changes and efficiency enhancements. On the other hand, their integration into real manufacturing environments requires meticulous considerations, such as safety, human-robot interaction, and cybersecurity. This article delves into MMs' essential role in achieving Industry 4.0's automation and adaptability by integrating mobility with manipulation capabilities. The study reviews MMs' industrial applications and integration into manufacturing systems. The most observed applications are logistics (49%) and manufacturing (33%). As Industry 4.0 advances, the paper emphasizes updating and aligning MMs with the smart factory concept by networks of sensors and the real-time analysis of them, especially for an enhanced human-robot interaction. Another objective is categorizing considerations for MMs' utilization in Industry 4.0-aligned manufacturing. This review methodically covers a wide range of considerations and evaluates existing solutions. It shows a more comprehensive approach to understanding MMs in Industry 4.0 than previous works. Key focus areas encompass perception, data analysis, connectivity, human-robot interaction, safety, virtualization, and cybersecurity. By bringing together different aspects, this research emphasizes a more integrated view of the role and challenges of MMs in the Industry 4.0 paradigm and provides insights into aspects often overlooked. A detailed and synthetic analysis of existing knowledge was performed, and insights into their future path in Industry 4.0 environments were provided as part of the contributions of this paper. The article also appraises initiatives in these domains, along with a succinct technology readiness analysis. To sum up, this study highlights MMs' pivotal role in Industry 4.0, encompassing their influence on adaptability, automation, and efficiency.

4.
Polymers (Basel) ; 15(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36771808

RESUMEN

Utilization of additive manufacturing (AM) is widespread in many industries due to its unique capabilities. These material extrusion methods have been developed extensively for manufacturing polymer and polymer composite materials. The raw material in filament form are liquefied in the liquefier section and are consequently extruded and deposited onto the bed platform. The designed parts are manufactured layer by layer. Therefore, there is a gradient of temperature due to the existence of the cyclic reheating related to each deposited layer by the newer deposited ones. Thus, the stated temperature evolution will have a significant role on the rheological behavior of the materials during this manufacturing process. Furthermore, each processing parameter can affect this cyclic temperature profile. In this study, different processing parameters concerning the manufacturing process of polymer and polymer composite samples have been evaluated according to their cyclic temperature profiles. In addition, the manufactured parts by the additive manufacturing process (the extrusion method) can behave differences compared to the manufactured parts by conventional methods. Accordingly, we attempted to experimentally investigate the rheological behavior of the manufactured parts after the manufacturing process. Thus the three-point bending fatigue and the tensile behavior of the manufactured samples were studied. Accordingly, the effect of the reinforcement existence and its direction and density on the tensile behavior of the manufactured samples were studied. Therefore, this study is helpful for manufacturers and designers to understand the behaviors of the materials during the FFF process and subsequently the behaviors of the manufactured parts as a function of the different processing parameters.

5.
Sci Rep ; 12(1): 13142, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35908079

RESUMEN

This paper investigates the effect of different additive manufacturing process parameters such as chamber temperature, Printing temperature, layer thickness, and print speed on five essential parameters that characterize the manufactured components: cylindricity, circularity, strength, and Young's modulus, and deformation by Gray Relational Analysis method simultaneously. Taguchi method was used to design the experiments, and the PA6 cylindrical parts were fabricated using a German RepRap X500® 3D printer. Then the Gray Relational Grade (GRG) values were calculated for all experiments. In the 8th trial, the highest value of GRG was observed. Then, to discover the optimal parameters, the GRG data were analyzed using ANOVA and S/N analysis, and it was determined that the best conditions for enhancing GRG are 60 °C in the chamber temperature, 270 °C in the printing temperature, 0.1 mm layer thickness, and 600 mm/min print speed. Finally, by using optimal parameters, a verification test was performed, and new components were investigated. Finally, comparing the initial GRG with the GRG of the experiments showed an improvement in the gray relational grade (14%) which is accompanying with improving of GRG value.

6.
Polymers (Basel) ; 13(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34771252

RESUMEN

Fused filament fabrication (FFF) is a layer-by-layer additive manufacturing (AM) process for producing parts. For industries to gain a competitive advantage, reducing product development cycle time is a basic goal. As a result, industries' attention has turned away from traditional product development processes toward rapid prototyping techniques. Because different process parameters employed in this method significantly impact the quality of FFF manufactured parts, it is essential to optimize FFF process parameters to enhance component quality. The paper presents optimization of fused filament fabrication process parameters to improve the shape deviation such as cylindricity and circularity of 3D printed parts with the Taguchi optimization method. The effect of thickness, infill pattern, number of walls, and layer height was investigated as variable parameters for experiments on cylindricity and circularity. The MarkForged® used Nylon White (PA6) to create the parts. ANOVA and the S/N ratio are also used to evaluate and optimize the influence of chosen factors. As a result, it was concluded that the hexagonal infill pattern, the thickness of 5 mm, wall layer of 2, and a layer height of 1.125 mm were known to be the optimal process parameters for circularity and cylindricity in experiments. Then a linear regression model was created to observe the relationship between the control variables with cylindricity and circularity. The results were confirmed by a confirmation test.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA