Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
C R Biol ; 342(1-2): 27-34, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30792115

RESUMEN

The goal of this study was to evaluate for the first time the expression of the androgen receptors (AR) in Harderian glands (HG) of the male Meriones lybicus in relation to the reproductive cycle. Six male Harderian glands of the resting period and 6 of the breeding period were collected. The animals were trapped in the desert of Béni Abbès (Algeria). The morphology of the Harderian glands was studied by light microscopy and morphometry, whereas the expression of the androgen receptors was assessed and quantified based on immunohistochemistry techniques. We have shown that the Harderian glands of Meriones libycus are tubuloalveolar glands with wide lumen. The glandular epithelium is composed of two types of cells (types I and II) in the resting season and three types of cells (types I, II and III) in the breeding season. These three types of cells differ in size and shape. Type-I cells have a prismatic shape, an acidophilic cytoplasm, and small lipidic vacuoles, whereas type-II ones are pyramidal in shape, with basophilic cytoplasm. Type-III cells resemble those of type I, and so they are prismatic in shape and have an acidophilic cytoplasm with larger lipidic vacuoles. The immunoreactivity of type-I and type-III cells was mainly cytoplasmic and the intensity of the immunostaining was significantly higher during the breeding season. Among other functions, the Harderian gland seems to be involved in the production of pheromones under the effect of androgens.


Asunto(s)
Glándula de Harder/metabolismo , Receptores Androgénicos/metabolismo , Reproducción/fisiología , Argelia , Animales , Citoplasma/metabolismo , Gerbillinae/fisiología , Inmunohistoquímica , Masculino , Estaciones del Año , Vacuolas/metabolismo
2.
Zoolog Sci ; 30(1): 53-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23317366

RESUMEN

The purpose of this investigation was to study the morphological aspects of the Harderian gland in Gerbillus tarabuli. Tissues were obtained from both male and female adult Gerbillus tarabuli and processed for light and electron microscopy. The Harderian gland in gerbil is large and well developed, covered by a thin capsule, from which thin septae extend, subdividing the gland into lobes and lobules. The endpieces of the gland are tubuloalveolar, which produce a secretion of lipid character. The glandular epithelium is pseudostratified with two types of secretory cells, the type C cells are columnar in shape with large lipid vacuoles, and type P cells pyramidal and serous, they are basally located with no luminal aspect. The epithelium possesses well-developed myoepithelial cells. The wide lumina are filled with lipid vacuoles, cellular debris, and porphyrins. The Harderian gland of the gerbil has no morphologically distinct duct system; a single extraglandular excretory duct is detected. Electron microscopic examination revealed that type C cells contain large electron-light lipid vacuoles, a well and extensive reticulum endoplasmic and a large number of mitochondria. The pyramidal cells are characterized by a small number of PAS-positive granules at the basal region; these cells exhibit one or two round nuclei, many electron-dense granules, crystalloid bodies, abundant mitochondria and many ribosomes in their cytoplasm. The three mechanism of secretion are seen in the Harderian gland of Gerbillus tarabuli. In its overall characteristics, the Harderian gland of Gerbillus tarabuli conforms to the general pattern observed in rodents. However, further research will be needed to correlate the presence of cytoplasmic slashes, crystalloids bodies and glycoproteins in epithelial cells with the biology of these animals and to their functional significance.


Asunto(s)
Gerbillinae/anatomía & histología , Glándula de Harder/ultraestructura , Animales , Femenino , Glándula de Harder/fisiología , Masculino
3.
C R Biol ; 335(1): 9-18, 2012 Jan.
Artículo en Francés | MEDLINE | ID: mdl-22226159

RESUMEN

The Greater White-toothed shrew Crocidura russula is short-lived species and the phase of senescence is greatly elongated in captivity. The loss of rhythmicity of biological functions that accompanies its aging is also well documented. C. russula is thus an excellent model to test the effects of aging on biological clocks. Melatonin is a key hormone in the synchronization of behaviors, metabolisms and physiological regulations with environmental factors. In the present work we want to know if the loss of rhythmicity and the reduced melatonin levels registered by the second year of life in this species could be associated to modified ultrastructural features of the pineal parenchyma, site of melatonin synthesis. Transmission electron microscopy (TEM) analysis of young (1-4 months) and old (25-28 months) shrew's pineals show that in older individuals, the parenchyma undergoes alterations affecting mainly nucleus, mitochondria and endoplasmic reticulum cisternae, with increased numbers of dense bodies and the formation of many concretions as well as a depletion of secretory products. These changes suggest a process of slowing pinealocytes metabolism which could explain the gradual reduction of melatonin levels registered during aging in C. russula.


Asunto(s)
Glándula Pineal/citología , Glándula Pineal/crecimiento & desarrollo , Musarañas/fisiología , Envejecimiento/fisiología , Animales , Relojes Biológicos/efectos de los fármacos , Núcleo Celular/ultraestructura , Retículo Endoplásmico/ultraestructura , Melatonina/metabolismo , Melatonina/fisiología , Microscopía Electrónica de Transmisión , Mitocondrias/ultraestructura
4.
C R Biol ; 334(12): 855-62, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22123087

RESUMEN

The desert rodents Psammomys obesus and Gerbillus tarabuli live under extreme conditions and overcome food and water shortage by modes of food and fluid intake specific to each species. Using immunohistochemistry and electron microscopy, we found that the hypothalamic magnocellular nuclei, and in particular, their vasopressinergic component, is highly and similarly developed in Psammomys and Gerbillus. In comparison to other rodents, the hypothalamus in both species contains more magnocellular VP neurons that, together with oxytocin neurons, accumulate in distinct and extensive nuclei. As in dehydrated rodents, many magnocellular neurons contained both neuropeptides. A striking feature of the hypothalamic magnocellular system of Psammomys and Gerbillus was its display of ultrastructural properties related to heightened neurosecretion, namely, a significant reduction in glial coverage of neuronal somata and dendrites in the hypothalamic nuclei. There were many neuronal elements whose surfaces were directly juxtaposed and shared the same synapses. Their magnocellular nuclei also showed a high level of sialylated isoform of the Neural Cell Adhesion Molecule (PSA-NCAM) that underlies their capacity for neuronal and glial plasticity. These species thus offer striking models of structural neuronal and glial plasticity linked to natural conditions of heightened neurosecretion.


Asunto(s)
Núcleo Basal de Meynert/citología , Núcleo Basal de Meynert/metabolismo , Neuroglía/fisiología , Neuronas/fisiología , Neuropéptidos/fisiología , Equilibrio Hidroelectrolítico/fisiología , Animales , Núcleo Basal de Meynert/ultraestructura , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Gerbillinae , Inmunohistoquímica , Masculino , Microscopía Electrónica , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/fisiología , Neuroglía/ultraestructura , Plasticidad Neuronal/fisiología , Neuronas/ultraestructura , Oxitocina/fisiología , Neurohipófisis/metabolismo , Neurohipófisis/fisiología , Neurohipófisis/ultraestructura , Fijación del Tejido , Vasopresinas/fisiología
5.
Histol Histopathol ; 25(2): 159-75, 2010 02.
Artículo en Inglés | MEDLINE | ID: mdl-20017103

RESUMEN

An immunohistochemical study of the magnocellular neurosecretory nuclei was performed in the hypothalamus of the desert lizard Uromastix acanthinurus using polyclonal antibodies against arginine vasotocin (AVT), mesotocin (MST) and neurophysins I and II (NpI, NpII). AVT- and MST-immunoreactivities were localized in individual neurons of the supraoptic, periventricular, and paraventricular nuclei and in scattered neurosecretory cells. The supraoptic nuclei (SONs) can be subdivided into rostral, medial and caudal portions. The rostral portion of the SONs was called the SON-ventral aggregation (V SON) because the neurosecretory neurons are present in the ventral part of the hypothalamus along the optic chiasma (OC). Their perikarya and fibres were only AVT-ir. The medial part of the SONs was constituted of two clusters of neurosecretory neurons located in the two lateral ends of the OC to form the SON-lateral aggregations (L SON). In the caudal end of the last one, some MST-ir perikarya appeared. The caudal part of the SONs was constituted of a dorso-lateral aggregation (D SON) of ir-neurons spreading over the lateral forebrain bundle (LFB). AVT- and MST- perikarya were observed in this caudal portion of the SONs, AVT-ir neurons being more numerous. AVTergic and MSTergic magnocellular neurons were present in the periventricular nuclei (PeVNs). Parvocellular and magnocellular AVT- and MST-ir were observed in the paraventricular nuclei (PVNs). The fibres emerging from the magnocellular neurons which belong to these nuclei and the scattered cells ran along the hypothalamic floor and entered the median eminence (ME) to end in the neural lobe of hypophysis. As a rule, immunoreactivity was also observed in all the regions of the forebrain with vasotocinergic and mesotocinergic perikarya and fibres. The immunoreactive distribution was similar to that described in other reptiles.


Asunto(s)
Hipotálamo/química , Lagartos , Neuronas/química , Sistemas Neurosecretores/química , Oxitocina/análogos & derivados , Proteínas de Reptiles/análisis , Vasotocina/análisis , Animales , Hipotálamo/citología , Inmunohistoquímica , Vías Nerviosas/química , Sistemas Neurosecretores/citología , Oxitocina/análisis , Núcleo Hipotalámico Paraventricular/química , Núcleo Supraóptico/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA